Skip to main content

Advertisement

Log in

Electrophysiological evaluation of visual pathways in paclitaxel-treated patients

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Summary

As paclitaxel may induce positive spontaneous visual symptoms or persistent visual loss, we carried out this electrophysiological study in an attempt to clarify the underlying pathophysiological mechanisms of visual pathway involvement. The study involved 30 breast cancer patients: 14 were treated with paclitaxel alone (group A) and 16 with paclitaxel and adriamycin (group B). Pattern visual evoked potentials (VEPs), and transient, 30 Hz flicker (FLK) and oscillatory potential (OP) white flash electroretinograms (ERGs), were recorded before treatment, after the third and sixth therapeutic cycle, and at the end of the programmed regimen. Pretreatment: Abnormal VEP and OP and FLK changes occurred more than 75% of patients; transient ERGs were normal in more than 90%. Serial recordings: VEPs remained unchanged in both goups. In group A, ERG b-wave latency significantly increased (ANOVA P<0.005), and OP and FLK were characterised by non-significant mild attenuation. Several combinations of ERG, OP, FLK and VEP changes occurred in 50% of the patients. The association between transitory lightining scotoma or blurred vision (reported by 12 patients) and VEP, ERG and FLK was poor, whereas that with OP was satisfactory. A few patients showed stable and persistent subclinical electrophysiological changes. Electrophysiological changes during treatment revealed the involvement of both the retina and anterior optic pathway. There was only a weak correlation between visual symptoms and electrophysiology. We suggest that the most likely mechanism of visual symptoms and electrophysiological changes during paclitaxel administration is vascular dysregulation in the retina, or ischemic mechanisms when the optic nerve is involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ekholm E, Rantanen V, Antila K, Salminen E, Paclitaxel changes sympathetic control of blood pressure Eur J Cancer 1997; 33(9):1419–1424

    Article  PubMed  CAS  Google Scholar 

  2. Ekholm E, Rantanen V, Bergman M, Vesalainen R, Antila K, Salminen E, Docetaxel and autonomic cardiovascular control in anthracycline treated breast cancer patients Anticancer Res 2000; 20(3B):2045–2048

    PubMed  CAS  Google Scholar 

  3. Faivre S, Goldwasser F, Soulie P, Misset JL, Paclitaxel (Taxol)-associated junctional tachycardia Anticancer Drugs 1997; 8(7):714–716

    PubMed  CAS  Google Scholar 

  4. Papadopoulos KP, Egorin MJ, Huang M, Troxel AB, Kaufman E, Balmaceda CM, et al. The pharmacokinetics and pharmacodynamics of high-dose paclitaxel monotherapy (825 mg/m2 continuous infusion over 24 h) with hematopoietic support in women with metastatic breast cancer Cancer Chemother Pharmacol 2001; 47(1):45–50

    Article  PubMed  CAS  Google Scholar 

  5. Gianni L, Dombernowsky P, Sledge G, Martin M, Amadori D, Arbuck SG, et al. Cardiac function following combination therapy with paclitaxel and doxorubicin: an analysis of 657 women with advanced breast cancer Ann Oncol 2001; 12(8):1067–1073

    Article  PubMed  CAS  Google Scholar 

  6. Hagiwara H, Sunada Y, Mechanism of taxane neurotoxicity Breast Cancer 2004; 11(1):82–85

    Article  PubMed  Google Scholar 

  7. Johnson DW, Cagnoni PJ, Schossau TM, Stemmer SM, Grayeb DE, Baron AE, et al. Optic disc and retinal microvasculopathy after high-dose chemotherapy and autologous hematopoietic progenitor cell support Bone Marrow Transplant 1999; 24(7):785–792

    Article  PubMed  CAS  Google Scholar 

  8. Scaioli V, Caraceni A, Martini C, Palazzini E, Tarenzi E, Fulfaro F, et al. Visual evoked potentials findings in course of paclitaxel doxorubicin combination chemotherapy Report of a case J Neurooncol 1995; 25(3):221–225

    Article  PubMed  CAS  Google Scholar 

  9. Tan WW, Walsh T Ocular toxicity secondary to paclitaxel in two lung cancer patients Med Pediatr Oncol 1998; 31(3):177

    Article  PubMed  CAS  Google Scholar 

  10. Teitelbaum BA, Tresley DJ, Cystic maculopathy with normal capillary permeability secondary to docetaxel Optom Vis Sci 2003; 80(4):277–279

    Article  PubMed  Google Scholar 

  11. Rowinsky EK, Chaudhry V, Cornblath DR, Donehower RC, Neurotoxicity of Taxol J Natl Cancer Inst Monogr 1993;(15):107–115

    PubMed  Google Scholar 

  12. Ziske CG, Schottker B, Gorschluter M, Mey U, Kleinschmidt R, Schlegel U, et al. Acute transient encephalopathy after paclitaxel infusion: report of three cases Ann Oncol 2002; 13(4):629–631

    Article  PubMed  CAS  Google Scholar 

  13. Perry JR, Warner E, Transient encephalopathy after paclitaxel (Taxol) infusion Neurology 1996; 46(6):1596–1599

    PubMed  CAS  Google Scholar 

  14. Nieto Y, Cagnoni PJ, Bearman SI, Shpall EJ, Matthes S, DeBoom T, et al. Acute encephalopathy: a new toxicity associated with high-dose paclitaxel Clin Cancer Res 1999; 5(3):501–506

    PubMed  CAS  Google Scholar 

  15. McGuire WP, Rowinsky EK, Rosenshein NB, Grumbine FC, Ettinger DS, Armstrong DK, et al. Taxol: a unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms Ann Intern Med 1989; 111(4):273–279

    PubMed  CAS  Google Scholar 

  16. Brown T, Havlin K, Weiss G, Cagnola J, Koeller J, Kuhn J, et al. A phase I trial of taxol given by a 6-hour intravenous infusion J Clin Oncol 1991; 9(7):1261–1267

    PubMed  CAS  Google Scholar 

  17. Ziske CG, Schottker B, Gorschluter M, Mey U, Kleinschmidt R, Schlegel U, et al. Acute transient encephalopathy after paclitaxel infusion: report of three cases Ann Oncol 2002; 13(4):629–631

    Article  PubMed  CAS  Google Scholar 

  18. Vaphiades MS, Celesia GG, Brigell MG, Positive spontaneous visual phenomena limited to the hemianopic field in lesions of central visual pathways Neurology 1996; 47(2):408–417

    PubMed  CAS  Google Scholar 

  19. Scaioli V, Antozzi C, Villani F, Rimoldi M, Zeviani M, Panzica F, et al. Utility of multimodal evoked potential study and electroencephalography in mitochondrial encephalomyopathy Ital J Neurol Sci 1998; 19(5):291–300

    Article  PubMed  CAS  Google Scholar 

  20. Kergoat H, Lovasik JV, The effects of altered retinal vascular perfusion pressure on the white flash scotopic ERG and oscillatory potentials in man Electroencephalogr Clin Neurophysiol 1990; 75(4):306–322

    Article  PubMed  CAS  Google Scholar 

  21. Kergoat H, Electroretinogram in unilateral vascular stress in nondiabetic and diabetic subjects Optom Vis Sci 1993; 70(9):743–749

    PubMed  CAS  Google Scholar 

  22. Lovasik JV, Kergoat H, Influence of transiently altered retinal vascular perfusion pressure on rod/cone contributions to scotopic oscillatory potentials Ophthalmic Physiol Opt 1991; 11(4):370–380

    Article  PubMed  CAS  Google Scholar 

  23. Tinjust D, Kergoat H, Lovasik JV, Neuroretinal function during mild systemic hypoxia Aviat Space Environ Med 2002; 73(12):1189–1194

    PubMed  Google Scholar 

  24. Coleman K, Fitzgerald D, Eustace P, Bouchier-Hayes D, Electroretinography, retinal ischaemia and carotid artery disease Eur J Vasc Surg 1990; 4(6):569–573

    Article  PubMed  CAS  Google Scholar 

  25. Hara A, Miura M, Decreased inner retinal activity in branch retinal vein occlusion Doc Ophthalmol 1994; 88(1):39–47

    Article  PubMed  CAS  Google Scholar 

  26. Holopigian K, Seiple W, Lorenzo M, Carr R, A comparison of photopic and scotopic electroretinographic changes in early diabetic retinopathy Invest Ophthalmol Vis Sci 1992; 33(10):2773–2780

    PubMed  CAS  Google Scholar 

  27. Rumi V, Angelini L, Scaioli V, D’Angelo A, Besana C, Primary antiphospholipid syndrome and neurologic events Pediatr Neurol 1993; 9(6):473–475

    Article  PubMed  CAS  Google Scholar 

  28. Kaiser-Kupfer MI, Kupfer C, Rodrigues MM, Tamoxifen retinopathy. A clinicopathologic reportOphthalmology 1981; 88(1):89–93

    PubMed  CAS  Google Scholar 

  29. Toimela T, Tahti H, Salminen L, Retinal pigment epithelium cell culture as a model for evaluation of the toxicity of tamoxifen and chloroquine Ophthalmic Res 1995; 27(Suppl 1):150–153

    Article  PubMed  CAS  Google Scholar 

  30. Zhang JJ, Jacob TJ, Valverde MA, Hardy SP, Mintenig GM, Sepulveda FV, et al. Tamoxifen blocks chloride channels. A possible mechanism for cataract formation J Clin Invest 1994; 94(4):1690–1697

    Article  PubMed  CAS  Google Scholar 

  31. Dulley P., Ocular adverse reactions to tamoxifen–a review Ophthalmic Physiol Opt 1999; 19(Suppl) 1:S2--S9

    Article  Google Scholar 

  32. Flach AJ, Clear evidence that long-term, low-dose tamoxifen treatment can induce ocular toxicity: a prospective study of 63 patients Surv Ophthalmol 1994; 38(4):392–393

    Article  PubMed  CAS  Google Scholar 

  33. Ah-Song R, Sasco AJ, Tamoxifen and ocular toxicity Cancer Detect Prev 1997; 21(6):522–531

    PubMed  CAS  Google Scholar 

  34. De Laey JJ, Flecked retina disorders Bull Soc Belge Ophtalmol 1993; 249:11–22

    PubMed  Google Scholar 

  35. Costa RH, Dhooge MR, Van Wing F, De Rouck AF, Tamoxifen retinopathy. A case report Bull Soc Belge Ophtalmol 1990; 238:161–168

    PubMed  CAS  Google Scholar 

  36. Noureddin BN, Seoud M, Bashshur Z, Salem Z, Shamseddin A, Khalil A Ocular toxicity in low-dose tamoxifen: a prospective study Eye 1999; 13(Pt 6):729–733

    PubMed  Google Scholar 

  37. Vinding T, Nielsen NV Retinopathy caused by treatment with tamoxifen in low dosage Acta Ophthalmol (Copenh) 1983; 61(1):45–50

    Article  CAS  Google Scholar 

  38. Pugesgaard T, Von Eyben FE, Bilateral optic neuritis evolved during tamoxifen treatment Cancer 1986; 58(2):383–386

    PubMed  CAS  Google Scholar 

  39. Ashford AR, Donev I, Tiwari RP, Garrett TJ, Reversible ocular toxicity related to tamoxifen therapy Cancer 1988; 61(1):33–35

    PubMed  CAS  Google Scholar 

  40. Colley SM, Elston JS, Tamoxifen optic neuropathy Clin Experiment Ophthalmol 2004; 32(1):105–106

    Article  PubMed  Google Scholar 

  41. Ostrow S, Hahn D, Wiernik PH, Richards RD, Ophthalmologic toxicity after cis-dichlorodiammineplatinum(II) therapy Cancer Treat Rep 1978; 62(10):1591–1594

    PubMed  CAS  Google Scholar 

  42. Rubin P, Hulette C, Khawly JA, Elkordy M, Hussein A, Vredenburgh JJ, et al. Ocular toxicity following high dose chemotherapy and autologous transplant Bone Marrow Transplant 1996; 18(1):253–256

    PubMed  CAS  Google Scholar 

  43. Johnson DW, Cagnoni PJ, Schossau TM, Stemmer SM, Grayeb DE, Baron AE, et al. Optic disc and retinal microvasculopathy after high-dose chemotherapy and autologous hematopoietic progenitor cell support Bone Marrow Transplant 1999; 24(7):785–792

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Scaioli.

Additional information

Address for offprints: Vidmer Scaioli, C. Besta National Insitute of Neurology, Via Celoria 11, 20133 Milano, Italy; Tel.: +39-02-2394275; Fax: +39-02-70600775; E-mail: vscaioli@istituto-besta.it

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scaioli, V., Caraceni, A., Martini, C. et al. Electrophysiological evaluation of visual pathways in paclitaxel-treated patients. J Neurooncol 77, 79–87 (2006). https://doi.org/10.1007/s11060-005-9008-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-005-9008-x

Keywords

Navigation