Skip to main content

Advertisement

Log in

Banking on the future: progress, challenges and opportunities for the genetic conservation of forest trees

  • Introduction
  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Genetic diversity provides the essential basis for the adaptation and resilience of tree species to environmental stress and change. The genetic conservation of tree species is an urgent global necessity as forest conversion and fragmentation continue apace, damaging insects and pathogens are transported between continents, and climate change alters local habitat suitability. Effective and efficient genetic conservation of tree species presents a substantial challenge because of the lack of basic information about many species, inadequate resources, and a historical lack of coordination within and between conservation sectors. Several cooperative efforts are already under way and are achieving conservation success, but much work remains. The Gene Conservation of Tree SpeciesBanking on the Future workshop in 2016 enabled the exchange of information and the creation of collaborations among tree conservation stakeholders. Several key themes emerged during the meeting’s presentations and dialogue, which are further explored in this paper. In situ conservation of species is the long-term goal and is often the most efficient approach for preserving the genetic diversity of many forest tree species. Whether existing reserves adequately protect species and are sufficient for future conservation needs is uncertain. Ex situ conservation is an important complement to in situ efforts, acting as an insurance measure against extinction, providing material for restoration, enabling additional research opportunities, and educating the public. Networks of botanic gardens, government agencies, and non-governmental organizations must continue to coordinate ex situ and in situ efforts to improve the efficiency and effectiveness of tree conservation efforts. Assessing and prioritizing which species and populations require genetic conservation and prioritizing among them is a critical need. Two key tree restoration needs are for wider dissemination of planting stock, particularly stock with resistance to insects and pathogens, and for specific silvicultural prescriptions that facilitate restoration efforts. Effective genetic conservation of forest trees will require ongoing cooperation among widely diverse groups of scientists, managers, and policymakers from the public and private sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Photo: Kevin M. Potter

Fig. 2

Photo: Kevin M. Potter

Fig. 3

a Photo: Robert M. Jetton; b Photo: Kevin M. Potter

Fig. 4

Photo: Kevin M. Potter

Fig. 5

a Photo: Andrew Bower; b Photo: Robert M. Jetton

Similar content being viewed by others

References

  • Alfaro RI, Fady B, Vendramin GG, Dawson IK, Fleming RA, Saenz-Romero C, Lindig-Cisneros RA, Murdock T, Vinceti B, Navarro CM, Skroppa T, Baldinelli G, El-Kassaby YA, Loo J (2014) The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change. Forest Ecol Manag 333:76–87. doi:10.1016/j.foreco.2014.04.006

    Article  Google Scholar 

  • Aravanopoulos FA (2016) Conservation and monitoring of tree genetic resources in temperate forests. Curr For Rep 2(2):119–129. doi:10.1007/s40725-016-0038-8

    Google Scholar 

  • Asner GP, Rudel TK, Aide TM, Defries R, Emerson R (2009) A contemporary assessment of change in humid tropical forests. Conserv Biol 23(6):1386–1395. doi:10.1111/j.1523-1739.2009.01333.x

    Article  PubMed  Google Scholar 

  • Bayliss J, Makungwa S, Hecht J, Nangoma D, Bruessow C (2007) Saving the island in the sky: the plight of the Mount Mulanje cedar Widdringtonia whytei in Malawi. Oryx 41(1):64–69. doi:10.1017/s0030605307001548

    Article  Google Scholar 

  • Beech E, Rivers M, Oldfield S, Smith P (2017) GlobalTreeSearch: the first complete global database of tree species and country distributions. J Sustain For. doi:10.1080/10549811.2017.1310049

    Google Scholar 

  • BGCI (2016) North American botanic garden strategy for plant conservation, 2016–2020. Botanic Gardens Conservation International, Chicago

    Google Scholar 

  • Boraks A, Broders KD (2016) Population genetic diversity of the rare hardwood butternut (Juglans cinerea) in the northeastern USA. Tree Genet Genomes 12(3):10. doi:10.1007/s11295-016-1002-2

    Article  Google Scholar 

  • Boshier DH, Boyle TJ (2000) Forest conservation genetics: limitations and future directions. In: Young AG, Boshier D, Boyle TJ (eds) Forest conservation genetics: principles and practice. CSIRO Publishing, Collingwood, pp 289–297

    Google Scholar 

  • Bottrill MC, Joseph LN, Carwardine J, Bode M, Cook C, Game ET, Grantham H, Kark S, Linke S, McDonald-Madden E, Pressey RL, Walker S, Wilson KA, Possingham HP (2008) Is conservation triage just smart decision making? Trends Ecol Evol 23(12):649–654. doi:10.1016/j.tree.2008.07.007

    Article  PubMed  Google Scholar 

  • Bower AD, St Clair B, Erickson V (2014) Generalized provisional seed zones for native plants. Ecol Appl 24(5):913–919

    Article  PubMed  Google Scholar 

  • Broadhurst LM, Lowe A, Coates DJ, Cunningham SA, McDonald M, Vesk PA, Yates C (2008) Seed supply for broadscale restoration: maximizing evolutionary potential. Evol Appl 1(4):587–597. doi:10.1111/j.1752-4571.2008.00045.x

    PubMed  PubMed Central  Google Scholar 

  • Castaneda-Alvarez NP, Khoury CK, Achicanoy HA, Bernau V, Dempewolf H, Eastwood RJ, Guarino L, Harker RH, Jarvis A, Maxted N, Muller JV, Ramirez-Villegas J, Sosa CC, Struik PC, Vincent H, Toll J (2016) Global conservation priorities for crop wild relatives. Nat Plants 2(4):6. doi:10.1038/nplants.2016.22

    Google Scholar 

  • Cavender N, Westwood M, Bechtoldt C, Donnelly G, Oldfield S, Gardner M, Rae D, McNamara W (2015) Strengthening the conservation value of ex situ tree collections. Oryx 49(3):416–424

    Article  Google Scholar 

  • Corlett RT (2016) Restoration, reintroduction, and rewilding in a changing world. Trends Ecol Evol 31(6):453–462. doi:10.1016/j.tree.2016.02.017

    Article  PubMed  Google Scholar 

  • Crane P (2015) Can we save the charismatic megaflora? Oryx 49(3):377–378. doi:10.1017/s0030605315000708

    Article  Google Scholar 

  • Dalgleish HJ, Nelson CD, Scrivani JA, Jacobs DF (2016) Consequences of shifts in abundance and distribution of American Chestnut for restoration of a foundation forest tree. Forests 7(1):9. doi:10.3390/f7010004

    Google Scholar 

  • de Lafontaine G, Ducousso A, Lefevre S, Magnanou E, Petit RJ (2013) Stronger spatial genetic structure in recolonized areas than in refugia in the European beech. Mol Ecol 22(17):4397–4412. doi:10.1111/mec.12403

    Article  PubMed  Google Scholar 

  • Devine W, Aubry C, Miller J, Potter KM, Bower AD (2012) Climate change and forest trees in the Pacific Northwest: Guide to vulnerability assessment methodology. USDA Forest Service, Pacific Northwest Region, Olympia

    Google Scholar 

  • DeWald LE, Kolanoski KM (2017) Conserving genetic diversity in ecological restoration: a case study with ponderosa pine in northern Arizona. New Forest, USA. doi:10.1007/s11056-016-9565-1

    Google Scholar 

  • Dukes JS, Pontius J, Orwig D, Garnas JR, Rodgers VL, Brazee N, Cooke B, Theoharides KA, Stange EE, Harrington R, Ehrenfeld J, Gurevitch J, Lerdau M, Stinson K, Wick R, Ayres M (2009) Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: what can we predict? Can J For Res Revue 39(2):231–248. doi:10.1139/x08-171

    Article  Google Scholar 

  • Dumroese RK, Williams MI, Stanturf JA, Clair JBS (2015) Considerations for restoring temperate forests of tomorrow: forest restoration, assisted migration, and bioengineering. New Forest 46(5–6):947–964. doi:10.1007/s11056-015-9504-6

    Article  Google Scholar 

  • Dvorak WS, Hamrick JL, Hodge GP (1999) Assessing the sampling efficiency of ex situ gene conservation efforts in natual pine populations in Central America. For Genet 6(1):21–28

    Google Scholar 

  • Eckert AJ, Wegrzyn JL, Liechty JD, Lee JM, Cumbie WP, Davis JM, Goldfarb B, Loopstra CA, Palle SR, Quesada T, Langley CH, Neale DB (2013) The evolutionary genetics of the genes underlying phenotypic associations for loblolly pine (Pinus taeda, Pinaceae). Genetics 195(4):1353–1372. doi:10.1534/genetics.113.157198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson G, Namkoong G, Roberds JH (1993) Dynamic gene conservation for uncertain futures. Forest Ecol Manag 62(1–4):15–37

    Article  Google Scholar 

  • Faber-Langendoen D, Nichols J, Master L, Snow K, Tomaino A, Bittman R, Hammerson G, Heidel B, Ramsay L, Teucher A, Young B (2012) NatureServe conservation status assessments: methodology for assigning ranks. NatureServe, Arlington

    Google Scholar 

  • Fant JB, Havens K, Kramer AT, Walsh SK, Callicrate T, Lacy RC, Maunder M, Meyer AH, Smith PP (2016) What to do when we can’t bank on seeds: what botanic gardens can learn from the zoo community about conserving plants in living collections. Am J Bot 103(9):1541–1543. doi:10.3732/ajb.1600247

    Article  PubMed  Google Scholar 

  • FAO (2010) Global forest resources assessment. Main report. Commission on Genetic Resources for Food and Agriculture, Food and Agriculture Organization of the United Nations, Rome

  • FAO (2012) The state of the world’s forest genetic resources: country report—United States of America. Commission on Genetic Resources for Food and Agriculture, Food and Agriculture Organization of the United Nations, Rome

  • FAO (2014a) Global plan of action for the conservation, sustainable use and development of Forest Genetic Resources. Commission on Genetic Resources for Food and Agriculture, Food and Agriculture Organization of the United Nations, Rome

  • FAO (2014b) The state of the world’s forest genetic resources. Commission on Genetic Resources for Food and Agriculture, Food and Agriculture Organization of the United Nations, Rome

  • Fettig CJ, Reid ML, Bentz BJ, Sevanto S, Spittlehouse DL, Wang TL (2013) Changing climates, changing forests: A Western North American perspective. J Forest 111(3):214–228. doi:10.5849/jof.12-085

    Article  Google Scholar 

  • Foden WB, Butchart SHM, Stuart SN, Vie JC, Akcakaya HR, Angulo A, DeVantier LM, Gutsche A, Turak E, Cao L, Donner SD, Katariya V, Bernard R, Holland RA, Hughes AF, O’Hanlon SE, Garnett ST, Sekercioglu CH, Mace GM (2013) Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8 (6). doi:10.1371/journal.pone.0065427

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Given DR (1994) Principles and practice of plant conservation. Timber Press, Portland

    Google Scholar 

  • Graudal L, Aravanopoulos F, Bennadji Z, Changtragoon S, Fady B, Kjaer ED, Loo J, Ramamonjisoa L, Vendramin GG (2014) Global to local genetic diversity indicators of evolutionary potential in tree species within and outside forests. Forest Ecol Manag 333:35–51. doi:10.1016/j.foreco.2014.05.002

    Article  Google Scholar 

  • Gray LK, Hamann A (2013) Tracking suitable habitat for tree populations under climate change in western North America. Clim Change 117(1–2):289–303. doi:10.1007/s10584-012-0548-8

    Article  Google Scholar 

  • Guerrant EOJ, Fiedler PL, Havens K, Maunder M (2004) Revised genetic sampling guidelines for conservation collections of rare and endangered plants. In: Guerrant EOJ, Havens K, Maunder M (eds) Ex situ plant conservation: supporting species survival in the wild. Island Press, Washington, pp 419–438

    Google Scholar 

  • Guerrant EO, Havens K, Vitt P (2014) Sampling for effective ex situ plant conservation. Int J Plant Sci 175(1):11–20. doi:10.1086/674131

    Article  Google Scholar 

  • Haidet M, Olwell P (2015) Seeds of success: a national seed banking program working to achieve long-term conservation goals. Nat Areas J 35(1):165–173

    Article  Google Scholar 

  • Hamrick JL (2004) Response of forest trees to global environmental changes. Forest Ecol Manag 197(1–3):323–335. doi:10.1016/j.foreco.2004.05.023

    Article  Google Scholar 

  • Hamrick JL, Nason JD (2000) Gene flow in forest trees. In: Young AG, Boshier D, Boyle TJ (eds) Forest conservation genetics: principles and practice. CSIRO Publishing, Collingwood, pp 81–90

    Google Scholar 

  • Harris JA, Hobbs RJ, Higgs E, Aronson J (2006) Ecological restoration and global climate change. Restor Ecol 14(2):170–176. doi:10.1111/j.1526-100X.2006.00136.x

    Article  Google Scholar 

  • Hastings JM, Potter KM, Koch FH, Megalos M, Jetton RM (2017) Prioritizing conservation seed banking locations for imperiled hemlock species using multi-attribute frontier mapping. N Forest. doi:10.1007/s11056-017-9575-7

    Google Scholar 

  • Havens K, Guerrant EOJ, Maunder M, Vitt P (2004) Guidelines for ex situ conservation collection management: minimizing risks. In: Guerrant EOJ, Havens K, Maunder M (eds) Ex situ plant conservation: supporting species survival in the wild. Island Press, Washington, pp 454–473

    Google Scholar 

  • Havens K, Kramer AT, Guerrant EO (2014) Getting plant conservation right (or not): the case of the United States. Int J Plant Sci 175(1):3–10. doi:10.1086/674103

    Article  Google Scholar 

  • Havens K, Vitt P, Still S, Kramer AT, Fant JB, Schatz K (2015) Seed sourcing for restoration in an era of climate change. Nat Areas J 35(1):122–133

    Article  Google Scholar 

  • Hoban S, Schlarbaum S (2014) Optimal sampling of seeds from plant populations for ex situ conservation of genetic biodiversity, considering realistic population structure. Biol Conserv 177:90–99. doi:10.1016/j.biocon.2014.06.014

    Article  Google Scholar 

  • Hoban S, Strand A (2015) Ex situ seed collections will benefit from considering spatial sampling design and species’ reproductive biology. Biol Conserv 187:182–191. doi:10.1016/j.biocon.2015.04.023

    Article  Google Scholar 

  • Hodge GR, Lopez JL, Acosta JJ, Woodbridge WC, Jump R, Jetton RM, Whittier WA, McGee JR, Gutierrez E (2017) Camcore 2016 annual report. North Carolina State University, Raleigh

    Google Scholar 

  • Holsinger KE, Vitt P (1997) The future of conservation biology: what’s a geneticist to do? In: Pickett STA, Ostfeld RS, Shachak M, Likens GE (eds) The ecological basis of conservation: heterogeneity, ecosystems, and biodiversity. Chapman and Hall, New York, pp 202–217

    Chapter  Google Scholar 

  • Jacobs DF (2007) Toward development of silvical strategies for forest restoration of American chestnut (Castanea dentata) using blight-resistant hybrids. Biol Conserv 137(4):497–506. doi:10.1016/j.biocon.2007.03.013

    Article  Google Scholar 

  • Jacobs DF, Dalgleish HJ, Nelson CD (2013) A conceptual framework for restoration of threatened plants: the effective model of American chestnut (Castanea dentata) reintroduction. New Phytol 197(2):378–393. doi:10.1111/nph.12020

    Article  PubMed  Google Scholar 

  • Jacobs DF, Oliet JA, Aronson J, Bolte A, Bullock JM, Donoso PJ, Landhausser SM, Madsen P, Peng SL, Rey-Benayas JM, Weber JC (2015) Restoring forests: what constitutes success in the twenty-first century? New Forest 46(5–6):601–614. doi:10.1007/s11056-015-9513-5

    Article  Google Scholar 

  • Jaramillo-Correa JP, Beaulieu J, Khasa DP, Bousquet J (2009) Inferring the past from the present phylogeographic structure of North American forest trees: seeing the forest for the genes. Can J For Res Revue 39(2):286–307. doi:10.1139/x08-181

    Article  Google Scholar 

  • Jetton RM, Whittier WA, Dvorak WS, Rhea JR (2013) Conserved ex situ genetic resources of eastern and Carolina hemlock: eastern North American conifers threatened by the hemlock woolly adelgid. Tree Planters’ Notes 70:59–71

    Google Scholar 

  • Jump AS, Marchant R, Penuelas J (2009) Environmental change and the option value of genetic diversity. Trends Plant Sci 14(1):51–58. doi:10.1016/j.tplants.2008.10.002

    Article  CAS  PubMed  Google Scholar 

  • Kanowski PJ (2000) Politics, policies and the conservation of forest genetic diversity. In: Young AG, Boshier D, Boyle TJ (eds) Forest conservation genetics: principles and practice. CSIRO Publishing, Collingwood, pp 275–287

    Google Scholar 

  • Kanowski PJ, Boshier DH (1997) Conserving the genetic resources of trees in situ. In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant conservation: the in situ approach. Chapman and Hall, London, pp 207–219

    Google Scholar 

  • Kew (2012) Plants under pressure—a global assessment. The first report of the sampled red index list for plants. Royal Botanic Gardens, Kew. http://www.kew.org/sites/default/files/kppcont_027304.pdf. Accessed 9 Feb 2017

  • Kimura MK, Uchiyama K, Nakao K, Moriguchi Y, San Jose-Maldia L, Tsumura Y (2014) Evidence for cryptic northern refugia in the last glacial period in Cryptomeria japonica. Ann Bot 114(8):1687–1700. doi:10.1093/aob/mcu197

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirk H, Freeland JR (2011) Applications and implications of neutral versus non-neutral markers in molecular ecology. Int J Mol Sci 12(6):3966–3988. doi:10.3390/ijms12063966

    Article  PubMed  PubMed Central  Google Scholar 

  • Koskela J, Vinceti B, Dvorak W, Bush D, Dawson IK, Loo J, Kjaer ED, Navarro C, Padolina C, Bordacs S, Jamnadass R, Graudal L, Ramamonjisoa L (2014) Utilization and transfer of forest genetic resources: a global review. Forest Ecol Manag 333:22–34. doi:10.1016/j.foreco.2014.07.017

    Article  Google Scholar 

  • Kramer AT, Havens K (2009) Plant conservation genetics in a changing world. Trends Plant Sci 14(11):599–607. doi:10.1016/j.tplants.2009.08.005

    Article  CAS  PubMed  Google Scholar 

  • LaBonte N, Tonos J, Hartel C, Woeste KE (2017) Genetic diversity and differentiation of yellowwood [Cladrastis kentukea (Dum.Cours.) Rudd] growing in the wild and in planted populations outside the natural range. N For. doi:10.1007/s11056-017-9566-8

  • Ledig FT (1992) Human impacts on genetic diversity in forest ecosystems. Oikos 63(1):87–108. doi:10.2307/3545518

    Article  Google Scholar 

  • Ledig FT, Kitzmiller JH (1992) Genetic strategies for reforestation in the face of global climate change. Forest Ecol Manag 50(1–2):153–169

    Article  Google Scholar 

  • Ledig FT, Vargas-Hernandez JJ, Johnsen KH (1998) The conservation of forest genetic resources: Case histories from Canada, Mexico, and the United States. J Forest 96(1):32–41

    Google Scholar 

  • Lefevre F, Koskela J, Hubert J, Kraigher H, Longauer R, Olrik DC, Schueler S, Bozzano M, Alizoti P, Bakys R, Baldwin C, Ballian D, Black-Samuelsson S, Bednarova D, Bordacs S, Collin E, De Cuyper B, De Vries SMG, Eysteinsson T, Frydl J, Haverkamp M, Ivankovic M, Konrad H, Koziol C, Maaten T, Paino EN, Ozturk H, Pandeva ID, Parnuta G, Pilipovic A, Postolache D, Ryan C, Steffenrem A, Varela MC, Vessella F, Volosyanchuk RT, Westergren M, Wolter F, Yrjana L, Zarina I (2013) Dynamic conservation of forest genetic resources in 33 European Countries. Conserv Biol 27(2):373–384. doi:10.1111/j.1523-1739.2012.01961.x

    Article  PubMed  Google Scholar 

  • Li DZ, Pritchard HW (2009) The science and economics of ex situ plant conservation. Trends Plant Sci 14(11):614–621. doi:10.1016/j.tplants.2009.09.005

    Article  CAS  PubMed  Google Scholar 

  • Lipow SR, Vance-Borland K, St Clair JB, Henderson J, McCain C (2004) Gap analysis of conserved genetic resources for forest trees. Conserv Biol 18(2):412–423

    Article  Google Scholar 

  • Liu JJ, Sniezko R, Murray M, Wang N, Chen H, Zamany A, Sturrock RN, Savin D, Kegley A (2016) Genetic diversity and population structure of Whitebark Pine (Pinus albicaulis Engelm.) in Western North America. PLoS ONE 11 (12). doi:10.1371/journal.pone.0167986

  • Lovett GM, Weiss M, Liebhold AM, Holmes TP, Leung B, Lambert KF, Orwig DA, Campbell FT, Rosenthal J, McCullough DG, Wildova R, Ayres MP, Canham CD, Foster DR, LaDeau SL, Weldy T (2016) Nonnative forest insects and pathogens in the United States: impacts and policy options. Ecol Appl 26(5):1437–1455

    Article  PubMed  Google Scholar 

  • Mace GM, Collar NJ, Gaston KJ, Hilton-Taylor C, Akcakaya HR, Leader-Williams N, Milner-Gulland EJ, Stuart SN (2008) Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv Biol 22(6):1424–1442. doi:10.1111/j.1523-1739.2008.01044.x

    Article  PubMed  Google Scholar 

  • Maunder M, Guerrant EOJ, Havens K, Dixon KW (2004a) Realizing the full potential of ex situ contributions to global plant conservation. In: Guerrant EOJ, Havens K, Maunder M (eds) Ex situ plant conservation: supporting species survival in the wild. Island Press, Washington, pp 389–418

    Google Scholar 

  • Maunder M, Havens K, Guerrant EOJ, Falk DA (2004b) Ex situ methods: a vital but underused set of conservation resources. In: Guerrant EOJ, Havens K, Maunder M (eds) Ex Situ plant conservation: supporting species survival in the wild. Island Press, Washington, pp 3–20

    Google Scholar 

  • Merkle SA, Andrade GM, Nairn CJ, Powell WA, Maynard CA (2007) Restoration of threatened species: a noble cause for transgenic trees. Tree Genet Genomes 3(2):111–118. doi:10.1007/s11295-006-0050-4

    Article  Google Scholar 

  • Merritt DJ, Dixon KW (2014) Seed availability for restoration. In: Bozzano M, Jalonen R, Thomas E et al. (eds) The state of the world’s froest genetic resources—thematic study. Genetic Considerations in Ecosystem Restoration Using Native Tree Species. Commission on Genetic Resources for Food and Agriculture, Food and Agriculture Organization of the United Nations, Rome, pp 97–104

  • Millar CI, Libby WJ (1991) Strategies for conserving clinal, ecotypic and disjunct population diversity in widespread species. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 149–170

    Google Scholar 

  • Millar CI, Stephenson NL (2015) Temperate forest health in an era of emerging megadisturbance. Science 349(6250):823–826. doi:10.1126/science.aaa9933

    Article  CAS  PubMed  Google Scholar 

  • Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl 17(8):2145–2151. doi:10.1890/06-1715.1

    Article  PubMed  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington

    Google Scholar 

  • Miller SA, Bartow A, Gisler M, Ward K, Young AS, Kaye TN (2010) Can an ecoregion serve as a seed transfer zone? Evidence from a common garden study with five native species. Restor Ecol 19:268–276. doi:10.1111/j.1526-100X.2010.00702.x

    Article  Google Scholar 

  • Montréal Process Working Group (2009) Technical notes on implementation of the montréal process criteria and indicators, Criteria 1-7, 3rd edn. Montréal Process Liaison Office. http://www.montrealprocess.org/Resources/Criteria_and_Indicators/index.shtml

  • Morales-Hidalgo D, Oswalt SN, Somanathan E (2015) Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. Forest Ecol Manag 352:68–77. doi:10.1016/j.foreco.2015.06.011

    Article  Google Scholar 

  • Namkoong G (1997) A gene conservation plan for loblolly pine. Can J For Res 27(3):433–437

    Article  Google Scholar 

  • Nelson MD, Flather CH, Riitters KH, Sieg C, Garner JD (2015) National report on sustainable forests—2015: conservation of biological diversity. In: Stanton SM, Christensen GA (eds) Pushing boundaries: new directions in inventory techniques and applications: Forest Inventory and Analysis (FIA) symposium 2015, vol Gen. Tech. Rep. PNW-GTR-931. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland

  • Newton A, Oldfield S, Rivers M, Mark J, Schatz G, Garavito NT, Cantarello E, Golicher D, Cayuela L, Miles L (2015) Towards a global tree assessment. Oryx 49(3):410–415. doi:10.1017/s0030605315000137

    Article  Google Scholar 

  • Oldfield S (2008) Choices for tree conservation. Oryx 42(2):159–160

    Article  Google Scholar 

  • Oldfield S, Newton AC (2012) Integrated conservation of tree species by botanic gardens: a reference manual. Botanic Gardens Conservation International, Richmond

    Google Scholar 

  • Oten K, Merkle SA, Jetton RM, Smith BC, Talley ME, Hain FP (2014) Understanding and developing resistance in hemlocks to the hemlock woolly adelgid. Southeast Nat 13:147–167

    Google Scholar 

  • Pais AL, Whetten RW, Xiang QY (2017) Ecological genomics of local adaptation in Cornus florida L. by genotyping by sequencing. Ecol Evol 7(1):441–465. doi:10.1002/ece3.2623

  • Pautasso M (2009) Geographical genetics and the conservation of forest trees. Perspect Plant Ecol Evol Syst 11(3):157–189. doi:10.1016/j.ppees.2009.01.003

    Article  Google Scholar 

  • Payton G (2010) Conserving the Dawn Redwood: the Ex Situ collection at the Dawes Arboretum. Arnoldia 68(1):26–33

    Google Scholar 

  • Pedlar JH, McKenney DW, Aubin I, Beardmore T, Beaulieu J, Iverson L, O’Neill GA, Winder RS, Ste-Marie C (2012) Placing forestry in the assisted migration debate. Bioscience 62(9):835–842. doi:10.1525/bio.2012.62.9.10

    Article  Google Scholar 

  • Pimm SL, Brooks TM (1999) The sixth extinction: how large, how soon, and where? In: Raven P (ed) Nature and human society: the quest for a sustainable world. National Academy Press, Washington

    Google Scholar 

  • Porth I, El-Kassaby YA (2014) Assessment of the genetic diversity in forest tree populations using molecular markers. Diversity 6:283–295

    Article  Google Scholar 

  • Potter KM, Crane BS (2012) Silviculture and the assessment of climate change genetic risk for southern Appalachian Forest Tree Species. In: Butnor JR (ed) Proceedings of the 16th Biennial southern silvicultural research conference (BSSRC), general technical report SRS-156. U.S. Department of Agriculture, Forest Service, Southern Research Station, Asheville, pp 257–258

  • Potter KM, Hargrove WW (2012) Determining suitable locations for seed transfer under climate change: a global quantitative model. New Forest 43(5–6):581–599. doi:10.1007/s11056-012-9322-z

    Article  Google Scholar 

  • Potter KM, Jetton RM, Dvorak WS, Hipkins VD, Rhea R, Whittier WA (2012) Widespread inbreeding and unexpected geographic patterns of genetic variation in eastern hemlock (Tsuga canadensis), an imperiled North American conifer. Conserv Genet 13(2):475–498. doi:10.1007/s10592-011-0301-2

    Article  Google Scholar 

  • Potter KM, Crane BS, Hargrove WW (2017) A United States national prioritization framework of tree species threatened by climate change. N Forest. doi:10.1007/s11056-017-9569-5

    Google Scholar 

  • Pritchard HW, Moat JF, Ferraz JBS, Marks TR, Camargo JLC, Nadarajan J, Ferraz IDK (2014) Innovative approaches to the preservation of forest trees. Forest Ecol Manag 333:88–98. doi:10.1016/j.foreco.2014.08.012

    Article  Google Scholar 

  • Quiñones-Pérez CZ, González-Elizondo MdS, Wehenkel C (2017) Ruling out genetic erosion in Picea chihuahuana Martínez. N Forest. doi:10.1007/s11056-017-9581-9

    Google Scholar 

  • Rajora OP, Mosseler A (2001) Challenges and opportunities for conservation of forest genetic resources. Euphytica 118(2):197–212

    Article  Google Scholar 

  • Ramsfield TD, Bentz BJ, Faccoli M, Jactel H, Brockerhoff EG (2016) Forest health in a changing world: effects of globalization and climate change on forest insect and pathogen impacts. Forestry 89(3):245–252. doi:10.1093/forestry/cpw018

    Article  Google Scholar 

  • Ratnam W, Rajora OP, Finkeldey R, Aravanopoulos F, Bouvet JM, Vaillancourt RE, Kanashiro M, Fady B, Tomita M, Vinson C (2014) Genetic effects of forest management practices: global synthesis and perspectives. Forest Ecol Manag 333:52–65. doi:10.1016/j.foreco.2014.06.008

    Article  Google Scholar 

  • Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55(6):1095–1103. doi:10.1554/0014-3820(2001)055[1095:HCCAMA]2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17(1):230–237

    Article  Google Scholar 

  • Rehfeldt GE, Leites LP, St Clair JB, Jaquish BC, Saenz-Romero C, Lopez-Upton J, Joyce DG (2014) Comparative responses to climate in the varieties of Pinus ponderosa and Pseudotsuga menziesii: clines in growth potential. Forest Ecol Manag 324:138–146

    Article  Google Scholar 

  • Rico Y (2017) Using computer simulations to assess sampling effects on spatial genetic structure in forest tree species. N Forest. doi:10.1007/s11056-017-9571-y

    Google Scholar 

  • Riitters KH, Wickham J, Costanza JK, Vogt P (2016) A global evaluation of forest interior area dynamics using tree cover data from 2000 to 2012. Landscape Ecol 31(1):137–148. doi:10.1007/s10980-015-0270-9

    Article  Google Scholar 

  • Rivers M, Shaw K, Beech E, Jones M (2015) Conserving the world’s most threatened trees: a global survey of ex situ collections. Botanic Gardens Conservation International, Richmond

    Google Scholar 

  • Rolston H (2004) In situ and ex situ conservation: Philosophical and ethical concerns. In: Guerrant EOJ, Havens K, Maunder M (eds) Ex situ plant conservation: supporting species survival in the wild. Island Press, Washington, pp 21–39

    Google Scholar 

  • Schaal B, Leverich WJ (2004) Population genetic issues in ex situ plant conservation. In: Guerrant EOJ, Havens K, Maunder M (eds) Ex situ plant conservation: supporting species survival in the wild. Island Press, Washington, pp 267–285

    Google Scholar 

  • Schaberg PG, DeHayes DH, Hawley GJ, Nijensohn SE (2008) Anthropogenic alterations of genetic diversity within tree populations: implications for forest ecosystem resilience. Forest Ecol Manag 256(5):855–862. doi:10.1016/j.foreco.2008.06.038

    Article  Google Scholar 

  • Schoettle AW, Coop JD (2017) Range-wide conservation of Pinus aristata: a genetic collection with ecological context for proactive management today and resources for tomorrow. N Forest. doi:10.1007/s11056-017-9570-z

    Google Scholar 

  • Schoettle AW, Sniezko RA (2007) Proactive intervention to sustain high-elevation pine ecosystems threatened by white pine blister rust. J For Res 12(5):327–336. doi:10.1007/s10310-007-0024-x

    Article  Google Scholar 

  • Schoettle AW, Goodrich BA, Hipkins V, Richards C, Kray J (2012) Geographic patterns of genetic variation and population structure in Pinus aristata, Rocky Mountain bristlecone pine. Can J For Res Revue 42(1):23–37. doi:10.1139/x11-152

    Article  Google Scholar 

  • Sharrock S (2012) Global strategy for plant conservation: a guide to the GSPC, All the Targets, Objectives and Facts. Botanic Gardens Conservation International, Richmond

  • Shearman P, Bryan J, Laurance WF (2012) Are we approaching ‘peak timber’ in the tropics? Biol Conserv 151(1):17–21. doi:10.1016/j.biocon.2011.10.036

    Article  Google Scholar 

  • Sniezko RA (2006) Resistance breeding against nonnative pathogens in forest trees—current successes in North America. Can J Plant Pathol-Rev Can Phytopathol 28:S270–S279

    Article  Google Scholar 

  • Sniezko RA, Kegley A, Savin DP (2017) Ex situ genetic conservation potential of seeds of two high elevation white pines. N Forest. doi:10.1007/s11056-017-9579-3

    Google Scholar 

  • St Clair JB, Howe GT (2011) Strategies for conserving forest genetic resources in the face of climate change. Turk J Bot 35(4):403–409. doi:10.3906/bot-1012-98

    Google Scholar 

  • Stanturf JA, Palik BJ, Williams MI, Dumroese RK, Madsen P (2014) Forest restoration paradigms. J Sustain For 33:S161–S194. doi:10.1080/10549811.2014.884004

    Article  Google Scholar 

  • Steiner KC, Westbrook JW, Hebard FV, Georgi LL, Powell WA, Fitzsimmons SF (2017) Rescue of American chestnut with extraspecific genes following its destruction by a naturalized pathogen. N Forest. doi:10.1007/s11056-016-9561-5

    Google Scholar 

  • Tamaki I, Setsuko S, Tomaru N (2016) Genetic diversity and structure of remnant Magnolia stellata populations affected by anthropogenic pressures and a conservation strategy for maintaining their current genetic diversity. Conserv Genet 17(3):715–725. doi:10.1007/s10592-016-0817-6

    Article  CAS  Google Scholar 

  • Thomas E, Jalonen R, Gallo L, Boshier D, Loo J (2014a) Introduction. In: Bozzano M, Jalonen R, Thomas E et al. (eds) The state of the world’s forest genetic resources—thematic study. Genetic considerations in ecosystem restoration using native tree species. Commission on Genetic Resources for Food and Agriculture, Food and Agriculture Organization of the United Nations, Rome, pp 3–12

  • Thomas E, Jalonen R, Loo J, Boshier D, Gallo L, Cavers S, Bordacs S, Smith P, Bozzano M (2014b) Genetic considerations in ecosystem restoration using native tree species. Forest Ecol Manag 333:66–75. doi:10.1016/j.foreco.2014.07.015

    Article  Google Scholar 

  • Tripiana V, Bourgeois M, Verhaegen D, Vigneron P, Bouvet JM (2007) Combining microsatellites, growth, and adaptive traits for managing in situ genetic resources of Eucalyptus urophylla. Can J For Res Revue 37(4):773–785. doi:10.1139/x06-260

    Article  Google Scholar 

  • United States Department of Agriculture Forest Service (2011) National Report on Sustainable Forests—2010. U.S. Department of Agriculture Forest Service, Washington

  • van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fule PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH, Veblen TT (2009) Widespread increase of tree mortality rates in the Western United States. Science 323(5913):521–524. doi:10.1126/science.1165000

    Article  PubMed  CAS  Google Scholar 

  • Vogel KP, Schmer MR, Mitchell RB (2005) Plant adaptation regions: ecological and climatic classification of plant materials. Rangel Ecol Manag 58(3):315–319. doi:10.2111/1551-5028(2005)58[315:PAREAC]2.0.CO;2

    Article  Google Scholar 

  • Wade TG, Riitters KH, Wickham JD, Jones KB (2003) Distribution and causes of global forest fragmentation. Conserv Ecol 7(2):16

    Google Scholar 

  • Wei XX, Beaulieu J, Khasa DP, Vargas-Hernandez J, Lopez-Upton J, Jaquish B, Bousquet J (2011) Range-wide chloroplast and mitochondrial DNA imprints reveal multiple lineages and complex biogeographic history for Douglas-fir. Tree Genet Genomes 7(5):1025–1040. doi:10.1007/s11295-011-0392-4

    Article  Google Scholar 

  • Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst 37:433–458

    Article  Google Scholar 

  • Williams CG (2017) How meso-scale pollen dispersal and its gene flow shape gene conservation decisions. N Forest. doi:10.1007/s11056-017-9574-8

    Google Scholar 

  • Yanchuk AD, Lester DT (1996) Setting priorities for conservation of the conifer genetic resources of British Columbia. Forest Chron 72(4):406–415

    Article  Google Scholar 

  • Yemshanov D, Koch FH, Ben-Haim Y, Downing M, Sapio F, Siltanen M (2013) A new multicriteria risk mapping approach based on a multiattribute frontier concept. Risk Anal 33(9):1694–1709. doi:10.1111/risa.12013

    Article  PubMed  Google Scholar 

  • Ying CC, Yanchuk AD (2006) The development of British Columbia’s tree seed transfer guidelines: purpose, concept, methodology, and implementation. Forest Ecol Manag 227(1–2):1–13

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the contributions of the authors of this Special Issue associated with the Gene Conservation of Tree Species workshop. We are also grateful for the constructive comments of Keith Woeste and Richard Sniezko on this manuscript. Finally, we thank members of the meeting organizing committee: Valerie Hipkins, Gary Man, David Gwaze, Pam Allenstein, Murphy Westwood, Abby Hird, Sean Hoban, Chai Chian Kua, Cathernine Bechtoldt, Pat Herendeen, Andy Bower, Christina Walters, Richard Zabel, and Matt Horning. This work was supported by in part through Research Joint Venture Agreements 13-JV-11330110-072 between the U.S. Department of Agriculture, Forest Service, Southern Research Station, and North Carolina State University, and 11-DG-11083150-011 and 12-DG-11083150-016 between the U.S. Department of Agriculture, Forest Service, Forest Health Protection, and Camcore, North Carolina State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Potter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potter, K.M., Jetton, R.M., Bower, A. et al. Banking on the future: progress, challenges and opportunities for the genetic conservation of forest trees. New Forests 48, 153–180 (2017). https://doi.org/10.1007/s11056-017-9582-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-017-9582-8

Keywords

Navigation