Skip to main content

Advertisement

Log in

A Therapeutic Target for Inhibition of Neurodegeneration: Autophagy

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The role of autophagy in supporting cellular survival and inhibiting neurodegeneration in Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, which are accompanied by the accumulation of the proteins β-amyloid, α-synuclein, and huntingtin, is discussed. Autophagy undergoes various degrees of weakening in these diseases, and also decreases in aging. Removal of accumulated toxic proteins and structures is mediated by the mechanisms of autophagy (chaperone-mediated autophagy, macroautophagy, mitophagy) in interactions with the ubiquitin-proteasome system. In many cases, activation of mTOR-dependent autophagy and mTOR-independent pathways for its regulation leads to the therapeutic effect of inhibiting neurodegeneration in cell cultures and animal models of diseases. A number of autophagy activators (resveratrol, metformin, rilmenidine, lithium, cucurmin, etc.) are in the stage of clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahamsen, H., Stenmark, I. L., and Platta, H. W., “Ubiquitination and phosphorylation of Beclin 1 and its binding partners: Tuning class III phosphatidylinositol 3-kinase activity and tumor suppression,” FEBS Lett., 586, 1584–1591 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Aharon-Peretz, J., Rosenbaum, H., and Gershoni-Baruch, R., “Mutations in the glucocerebrosidase gene and Parkinson’s disease in Ashkenazi Jews,” New Engl. J. Med., 351, 1972–1977 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Ahmed, I., Liang, Y., Schools, S., et al., “Development and characterization of a new Parkinson’s disease model resulting from impaired autophagy,” J. Neurosci., 32, 16,503–16,509 (2012).

  • Alvarez-Erviti, L., Rodriguez-Oroz, M. C., Cooper, J. M., et al., “Chaperone-mediated autophagy markers in Parkinson disease brains,” Arch. Neurol., 67, 1464–1472 (2010).

    Article  PubMed  Google Scholar 

  • Alvarez-Erviti, L., Seow, Y., Schapira, A. H., et al., “Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission,” Neurobiol. Dis., 42, No. 3, 360–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrasate, M., Mitr, S., Schweitzer, F. S., et al., “Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death,” Nature, 431, 805–810 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Baba, M., Nakajo, S., Tu, P. H., et al., “Aggregation of α-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies,” Am. J. Pathol., 152, 879–884 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balgi, A. D., Fonseca, B. D., Donohue, E., et al., “Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORCI signaling,” PloS One, 4, No. 9, e7124 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ballabio, A., “The awesome lysosome,” EMBO Mol. Med., 8, No. 2, 73–76 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartlett, B. J., Isakson, P., Lewerenz, J., et al., “p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects,” Autophagy, 7, No. 6, 572–583 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedford, L., Hay, D., Devoy, A., et al., “Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies,” J. Neurosci., 28, 8189–8198 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Behrends, C. and Fulda, S., “Receptor proteins in selective autophagy,” Int. J. Cell Biol., 2012, 673290 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bento, C. F., Renna, M., Ghislat, G., et al., “Mammalian Autophagy: how does it work?” Annu. Rev. Biochem., 85, No. 1, (2016).

  • Berger, Z., Ravikumar, B., Menzies, F. M., et al., “Rapamycin alleviates toxicity of different aggregate-prone proteins,” Hum. Mol. Genet., 15, 433–42 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Boland, B., Kumar, A., Lee, S., et al., “Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease,” J. Neurosci., 28, 6926–6937 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bove, J., Martinez-Vicente, M., and Vila, M., “Fighting neurodegeneration with rapamycin: mechanistic insights,” Nat. Rev. Neurosci., 12, 437–452 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Boya, P., González-Polo, R. A., Casares, N., et al., “Inhibition of macroautophagy triggers apoptosis,” Mol. Cell., Biol., 25, No. 3, 1025–1040 (2005).

    Article  CAS  Google Scholar 

  • Bürli, R. W., Luckhurst, C. A., Aziz, O., et al., “Design, synthesis, and biological evaluation of potent and selective class IIa histone deacetylase (HDAC) inhibitors as a potential therapy for Huntington’s disease,” J. Med. Chem., 56, No. 24, 9934–54 (2013).

    Article  PubMed  CAS  Google Scholar 

  • Butiner, S., Broeskamp, E., Sommer, C., et al., “Spermidine protects against α-synuclein neurotoxicity,” Cell Cycle, 13, 3903–3908 (2014).

    Article  CAS  Google Scholar 

  • Button, R. W., Luo, S., and Rubinsztein, D. C., “Autophagic activity in neuronal cell death,” Neurosci. Bull., 31, No. 4, 382–394 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Caccamo, A., Majuder, S., Richardson, A., et al., “Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-5, and Tau: Effects on cognitive impairments,” J. Biol. Chem., 285, 13107–13120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cataldo, A. M., Mathews, P. M., Boiteau, A. B., et al., “Down syndrome fibroblast model of Alzheimer-related endosome pathology: accelerated endocytosis promotes late endocytic defects,” Am. J. Pathol., 173, 370–384 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciechanover, A. and Kwon, Y., T., “Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies,” Exp. Mol. Med., 47, e147 (2015).

  • Chauhan, S., Goodwin, J. G., Chauhan, S., et al., “ZKSCAN3 is a master transcriptional repressor of autophagy,” Mol. Cell., 50, 16–28 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, H. C., Fong, T. K., Hsu, P. W., and Chiu, W. T., “Multifaceted effects of rapamycin on functional recovery after spinal cord injury in rats through autophagy promotion, antiinflammation, and neuroprotection,” J. Surg. Res., 179, No. 1, e203–e210 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Cheung, T., Zhang, N. Q., Hung, C. H., et al., “Temporal relationship of autophagy and apoptosis in neurons challenged by low molecular weight β-amyloid peptide,” J. Cell Mol. Med., 15, No. 2, 244–57 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Choudhury, S., Kolukula V. K., Preet, A., et al., “Dissecting the pathways that destabilize mutant p53, the proteasome or autophagy?” Cell Cycle, 12, 1022–1029 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu, C. T., “Autophagic stress in neuronal injury and disease,” J. Neuropathol. Exp. Neurol., 65, 423–432 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu, Y., Dodiya, H., Aebischer, P., et al., “Alterations in lysosomal and proteasomal markers in Parkinson’s disease: relationship to α-synuclein inclusions,” Neurobiol. Dis., 35, 385–398 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Coune, P. G., Bensadoun, J. C., Aebischer, P., and Schneider, B. L., “Rab1A over-expression prevents Golgi apparatus fragmentation and partially corrects motor deficits in an alpha-synuclein based rat model of Parkinson’s disease,” J. Parkinsons Dis., 1, 373–387 (2011).

    CAS  PubMed  Google Scholar 

  • Crews, L., Spencer, B., Desplats, P., et al., “Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy,” PLoS One, 5, No. 2, e9313 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cuervo, A. M., “Autophagy: many paths to the same end,” Mol. Cell. Biochem., 263, No. 1–2, 55–72 (2004).

    Article  CAS  Google Scholar 

  • Cuervo, A. M., Stefanis, L., Fredenburg, R., et al., “Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy,” Science, 305, 1292–1295 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Cuervo, A. M. and Wong, E., “Chaperone-mediated autophagy: roles in disease and aging,” Cell. Res., 24, No. 1, 92–104 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Cullen, V., Sardi, S. P., Ng, J., et al., “Acid β-glucosidase mutants linked to Gaucher disease, Parkinson disease, and Lewy body dementia alter α-synuclein processing,” Ann. Neurol., 69, No. 6, 940–953 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Dantuma, N. P. and Lindsten, K., “Stressing the ubiquitin-proteasome system,” Cardiovasc. Res., 85, No. 2, 263–271 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Das, G., and Shravage, B. V., and Baehrecke, E. H., “Regulation and function of autophagy during cell survival and cell death,” Cold Spring Harb. Perspect. Biol., 4, No. 6, pii: a008813 (2012).

  • Decressac, M., Mattsson, B., Weikop, P., et al., “TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity,” Proc. Natl. Acad. Sci. USA, 110, E1817–E1826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehay, B., Bove, J., Rodriguez-Muela, N., et al., “Pathogenic lysosomal depletion in Parkinson’s disease,” J. Neurosci., 30, No. 37, 12535–12544 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Dehay, B., Ramirez, A., Martinez-Vicente, M., et al., “Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal defi - ciency and leads to Parkinson disease neurodegeneration,” Proc. Natl. Acad. Sci. USA, 109, No. 24, 9611–9616 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demuro, A., Mina, E., Kayed, R., et al., “Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers,” J. Biol. Chem., 280, 17,294–17,300 (2005).

  • Deng, Y. N., Shi, J., Liu, J., and Qu, Q. M., “Celastrol protects human neuroblastoma SH-SY5Y cells from rotenone-induced injury through induction of autophagy,” Neurochem. Int., 63, 1–9 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Dennissen, E. J., Kholod, N., and van Leeuwen, E. W., “The ubiquitin proteasome system in neurodegenerative diseases: culprit, accomplice or victim?” Prog. Neurobiol, 96, 190–207 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Di Zanni, E., Bachetti, T., Parodi, S., et al., “In vitro drug treatments reduce the deleterious effects of aggregates containing polyAla expanded PHOX2B proteins,” Neurobiol. Dis., 45, No. 1, 508–518 (2012).

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Hernandez, M., Valera, A. G., Moran, M. A., et al., “Inhibition of 26S proteasome activity by huntingtin fi laments but not inclusion bodies isolated from mouse and human brain,” J. Neurochem., 98, No. 5, 1585–1596 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Dice, J. E., “Chaperon-mediated autophagy,” Autophagy, 3, 295–299 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Ding, W. X., and Yin, X. M., “Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome,” Autophagy, 4, 141–150 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Du, G., Liu, X., Chen, X., et al., “Drosophila histone deacetylase 6 protects dopaminergic neurons against α-synuclein toxicity by promoting inclusion formation,” Mol. Biol. Cell., 21, 2128–2137 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupuis, L., “Mitochondrial quality control in neurodegenerative diseases,” Biochimie, 100, 177–183 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi-Fakhari, D., Cantuti-Castelvetri, I., Fan, Z., et al., “Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of alpha-synuclein,” J. Neurosci., 31, No. 41, 14,508–14,520 (2011).

    Article  CAS  Google Scholar 

  • Feldman, M. E., Apsel, B., Uotila, A., et al., “Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2,” PLoS Biol., 7, No. 2, e38 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Filimonenko, M., Isakson, P., Finley, K. D., et al., “The selective macroautophagic degradation of aggregated proteins requires the PI3Pbinding protein Alfy,” Mol. Cell., 38, No. 2, 265–279 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filomeni, G., Graziani, L., De Zio, D., et al., “Neuroprotection of kaempferol by autophagy in models of rotenone mediated acute toxicity: possible implications for Parkinson’s disease,” Neurobiol. Aging, 33, No. 4, 767–785 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Floto, R. A., Sarkar, S., Perlstein, E. O., et al., “Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington’s disease models and enhance killing of mycobacteria by macrophages,” Autophagy, 3, No. 6, 620–622 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Forlenza, O. V., De Paula, V. J., Machado-Vieira, R., et al., “Does lithium prevent Alzheimer’s disease?” Drugs Aging, 29, 335–342 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Frake, R. A., Ricketts, T., Menzies, F. M., and Rubinsztein, D. C., “Autophagy and neurodegeneration,” J. Clin. Invest., 125, 65–74 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Fusco, C., Micale, L., Egorov, M., et al., “The E3-ubiquitin ligase TRIM50 interacts with HDAC6 and p62, and promotes the sequestration and clearance of ubiquitinated proteins into the aggresome,” PLoS One, 7, No. 7, e40440 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gal, J., Ström, A. L., Kwinter, D. M., et al., “Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism,” J. Neurochem., 111, No. 4, 1062–1073 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galluzzi, L., Vitale, L., Abrams, J. M., et al., “Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death,” Cell Death Differ., 19, No. 1, 107–120 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Geisler, S., Holmstrom, K. M., Skteat, D., et al., “PINKI/Parkin mediated mitophagy is dependent on VDAC1 and p62/SQSTMI,” Nat. Cell. Biol., 12, 119–131 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Ghavami, S., Shojaei, S., Yeganeh, B., et al., “Autophagy and apoptosis dysfunction in neurodegenerative disorders,” Prog. Neurobiol., 112, 24–49 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Hamano, T., Gendron, T. E., Causevic, E., et al., “Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression,” Eur. J. Neurosci., 27, No. 5, 1119–1130 (2008).

    Article  PubMed  Google Scholar 

  • Hara, T., Nakamura, K., Matsui, M., et al., “Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice,” Nature, 441, No. 7095, 885–889 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Hashemi, M., Ghavami, S., Eshraghi, M., et al., “Cytotoxic effects of intra and extracellular zinc chelation on human breast cancer cells,” Eur. J. Pharmacol., 557, No. 1, 9–19 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto, M., Rockenstein, E., Crews, L., and Masliah, E., “Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases,” Neuromolecular Med., 4, No. 1–2, 21–36 (2003).

    Article  CAS  PubMed  Google Scholar 

  • He, L. Q., Lu, J. H., and Yue, Z. Y., “Autophagy in ageing and ageing associated diseases,” Acta Pharmacol. Sin., 34, No. 5, 605–611 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegde, A. N. and Upadhya, S. C., “Role of ubiquitin-proteasome mediated proteolysis in nervous system disease,” Biochim. Biophys. Acta, 1809, 128–140 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Hernandez, D., Torres, C. A., Setlik, W., et al., “Regulation of presynaptic neurotransmission by macroautophagy,” Neuron, 74, No. 2, 277–284 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou, W., Han, J., Lu, C., et al., “Autophagic degradation of active caspase-8, a crosstalk mechanism between autophagy and apoptosis,” Autophagy, 6, 891–900 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, Y. and Mucke, L., “Alzheimer mechanisms and therapeutic strategies,” Cell, 148, 1204–1222 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichimura, Y., Kumanomidou, T., Sou, Y. S., et al., “Structural basis for sorting mechanism of p62 in selective autophagy,” J. Biol. Chem., 283, No. 33, 22847–22857 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Jiang, T., Yu, J. T., Tian, Y., and Tan, L., “Epidemiology and etiology of Alzheimer’s disease: from genetic to non-genetic factors,” Curr. Alzheimer Res., 10, 852–867 (2013a).

    Article  CAS  PubMed  Google Scholar 

  • Jiang, T. E., Zhang, Y. J., Zhou, H. Y., et al., “Curcumin ameliorates the neurodegenerative pathology in A53T cc-synuclein tell model of Parkinson’s disease through the downregulation of mTOR/p70S6K signaling and the recovery of macroautophagy,” J. Neuroimmune Pharmacol., 8, No. 1, 356–369 (2013b).

    Article  PubMed  Google Scholar 

  • Johnson, G. W., Melia, T. I., and Yamamoto, A., “Modulating macroautophagy: a neuronal perspective,” Future Med. Chem., 4, 1715–1731 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang, C. and Avery, L., “To be or not to be, the level of autophagy is the question: dual roles of autophagy in the survival response to starvation,” Autophagy, 4, 82–84 (2008).

    Article  PubMed  Google Scholar 

  • Kaushik, S., Massey, A. C., Mizushima, N., and Cuervo, A. M., “Constitutive activation of chaperone-mediated autophagy in tells with impaired macroautophagy,” Mol. Biol. Cell., 19, 2179–2192 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller, J. N., Huang, E. E., and Markesbery, W. R., “Decreased levels of pro te asome activity and proteasome expression in aging spinal cord,” Neuroscience, 98, 149–156 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kempermann, G., “Activity dependency and aging in the regulation of adult neurogenesis,” Cold Spring Harb. Perspect. Biol., 7, No. 11 (2015); pii: a018929

  • Khan, M. M., Ahmad, A., Ishrat, T., et al., “Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson’s disease,” Brain Res., 1328, 139–151 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Kickstein, E., Krauss, S., Thornhill, P., et al., “Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling,” Proc. Natl. Acad. Sci. USA, 107, No. 50, 21,830–21,835 (2010).

    Article  CAS  Google Scholar 

  • Kiffin, R., Christian, C., Knecht, E., and Cuervo, A. M., “Activation of chaperone-mediated autophagy during oxidative stress,” Mol. Biol. Cell., 15, 4829–4840 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, D., Nguyen, M. D., Dobbin, M. M., et al., “SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis,” EMBO J., 26, No. 13, 3169–3179 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J., Kundu, M., Viollet, B., and Guan, K. L., “AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1,” Nat. Cell. Biol., 13, 132e141 (2011).

    Google Scholar 

  • Kiriyama, Y. and Nochi, H., “The function of autophagy in neurodegenerative diseases,” Int. J. Mol. Sci., 16, No. 11, 26797–26812 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkin, V. T., Lamark, Y. S., Sou, G., et al., “A role for NBR1 in autophagosomal degradation of ubiquitinated substrates,” Mol. Cell., 33, 505–516 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Klionsky, D. J., Abdelmohsen, K., Abe, A., et al. (more than 2000 co-authors), “Guidelines for the use and interpretation of assays for monitoring autophagy (3rd ed.),” Autophagy, 12, No. 1, 1–222 (2016).

  • Kochergin, I. A. and Zakharova, M. N., “The role of autophagy in neurodegenerative diseases,” Neirokhimiya, 33, No. 1, 12–24 (2016).

    Google Scholar 

  • Koga, H., Martinez-Vicente, M., Arias, et al., “Constitutive upregulation of chaperone-mediated autophagy in Huntington’s disease,” J. Neurosci., 31, No. 50, 18492–18505 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu, M., Waguri, S., Chiba, T., et al., “Loss of autophagy in the central nervous system causes neurodegeneration in mice,” Nature, 441, No. 7095, 880–884 (2006).

  • Komatsu, M., Wang, Q. J., Holstein, G. R., et al., “Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration,” Proc. Natl. Acad. Sci. USA, 104, No. 36, 14489–14494 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korolchuk, V. I., Menzies, F. M., and Rubinsztein, D. C., “Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems,” FEBS Lett., 584, No. 7, 1393–1398 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Larsen, K. E. and Sulzer, D., “Autophagy in neurons: a review,” Histol. Histopathol., 17, 897–908 (2002).

    CAS  PubMed  Google Scholar 

  • Lazzara, C. A. and Kim, Y. H., “Potential application of lithium in Parkinson’s and other neurodegenerative diseases,” Front. Neurosci., 9, 403 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, J.-H., Yu, W. H., Kumar, A., et al., “Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations,” Cell, 141, No. 7, 1146–1158 (2010a).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J. Y., Koga, H., Kawaguchi, Y., et al., “HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy,” EMBO J., 29, No. 5, 969–980 (2010b).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, M. J., Lee, J. H., and Rubinsztein, D. C., “Tau degradation: the ubiquitin-proteasome system versus the autophagolysosome system,” Prog. Neurobiol., 105, 49–59 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Lee, S., Sato, Y., and Nixon, R. A., “Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer’s-like axonal dystrophy,” J. Neurosci., 31, No. 21, 7817–7830 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L., Zhang, S., Zhang, X., et al., “Autophagy enhancer carbamazepine alleviates memory deficits and cerebral amyloid-beta pathology in a mouse model of Alzheimer’s disease,” Curr. Alzheimer Res., 10, 433e441 (2013).

    Google Scholar 

  • Liang, Q. L., Ouyang, X. S., Schneider, L., and Zhang, J. H., “Reduction of mutant huntingtin accumulation and toxicity by lysosomal cathepsins D and B in neurons,” Mol. Neurodegener., 6, 37 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, T. K., Chen, S. D., Chuang, Y. C., et al., “Resveratrol partially prevents rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through induction of heme oxygenase-1 dependent autophagy,” Int. J. Mol. Sci., 15, 1625–1646 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lindersson, E., Beedholm, R., Hojrup, P., et al., “Proteasomal inhibition by alpha-synuclein fi laments and oligomers,” J. Biol. Chem., 279, No. 13, 12924–12934 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Lipinski, M. M., Zheng, B., Lu, T., et al., “Genome-wide analysis reveals me chanisms modulating autophagy in normal brain aging and in Alzheimer’s disease,” Proc. Natl. Acad. Sci. USA, 107, No. 32, 14164–14169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, C. W., Corboy, M. J., DeMartino, G. N., and Thomas, P. J., “Endoproteolytic activity of the proteasome,” Science, 299, 408–411 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Liu, D., Pitta, M., Jiang, H., et al., “Nicotinamide forestalls pathology and cognitive decline in Alzheimer mice: evidence for improved neuronal bioenergetics and autophagy procession,” Neurobiol. Aging, 34, 1564–1580 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Lu, K., Psakhye, I., and Jentsch, S., “Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family,” Cell, 158, 549–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Lynch-Day, M. A., Mao, K., Wang, K., et al., “The role of autophagy in Parkinson’s disease,” Cold Spring Harb. Perspect. Med., 2, a009357 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma, Q., Qiang, J., Gu, P., et al., “Age-related autophagy alterations in the brain of senescence accelerated mouse prone 8 (SAMP8) mice,” Exp. Gerontol., 46, 533e541 (2011).

    Article  Google Scholar 

  • Ma, T. C., Buescher, J. L., Oatis, B., et al., “Metformin therapy in a transgenic mouse model of Huntington’s disease,” Neurosci. Lett., 411, No. 2, 98–103 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Maday, S., Wallace, K. E., and Holzbaur, E. L. F., “Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons,” J. Cell Biol., 196, No. 4, 407–417 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnaudeix, A., Wilson, C. M., Page, G., et al., “PP2A blockade inhibits autophagy and causes intraneuronal accumulation of ubiquitinated proteins,” Neurobiol. Aging, 34, No. 3, 770–790 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Majumder, S., Richardson, A., Strong, R., and Oddo, S., “Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits,” PLoS One, 6, e25416 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malagelada, C., Jin, Z. H., Jackson-Lewis, V., et al., “Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson’s disease,” J. Neurosci., 30, 1166–1175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandell, M. A., Jain, A., Arko-Mensah, J., et al., “TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition,” Dev. Cell, 30, No. 4, 394–409 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marambaud, P., Zhao, H., and Davies, P., “Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides,” J. Biol. Chem., 280, 37377–37382 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Martin, D. D., Ladha, S., Ehrnhoefer, D. E., and Hayden, M. R., “Autophagy in Huntington disease and huntingtin in autophagy,” Trends Neurosci., 38, 26–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Vicente, M., Talloczy, Z., Kaushik, S., et al., “Dopamine-mo dified α-synuclein blocks chaperon-mediated autophagy,” J. Clin. Invest., 118, No. 2, 777–788 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Vicente, M., Talloczy, Z., Wong, E., et al., “Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease,” Nat. Neurosci., 13, 567–576 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Vicente, M., “Autophagy in neurodegenerative diseases: from pathogenic dysfunction to therapeutic modulation,” Semin. Cell Dev. Biol., 40, 115–126 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Vicente, M. and Vila, M., “Alpha-synuclein and protein degradation pathways in Parkinson’s disease: a pathological feed-back loop,” Exp. Neurol., 247, 308–313 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Martini-Stoica, H., Xu, Y., Ballabio, A., and Zheng, H., “The Autophagy-Lysosomal Pathway in Neurodegeneration: A TFEB Perspective,” Trends Neurosci., pii: S01662236(16)00026-6 (2016).

  • Matsumoto, G., Wada, K., Okuno, M., et al., “Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins,” Mol. Cell., 44, 279–289 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Mazzulli, J. R., Xu, Y. H., Sun, Y., et al., “Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies,” Cell, 146, No. 1, 37–52 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNaught, K. S. and Jenner, P., “Proteasomal function is impaired in substantia nigra in Parkinson’s disease,” Neurosci. Lett., 297, 191–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Mealer, R. G., Murray, A. J., Shahani, N., et al., “Rhes, a striatal-selective protein implicated in Huntington disease binds beclin-1 and activates autophagy,” J. Biol. Chem., 289, 3547–3554 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Mendelsohn, A. R. and Larrick, J. W., “Rapamycin as an antiaging therapeutic?: targeting mammalian target of rapamycin to treat Hutchinson-Gilford progeria and neurodegenerative diseases,” Rejuvenation Res., 14, 437–441 (2011).

  • Menzies, E. M., Huebener, J., Renna, M., et al., “Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3,” Brain, 133, No. Pt 1, 93–104 (2010).

  • Mizushima, N., Yamamoto, A., Matsui, M., et al., “In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker,” Mol. Biol. Cell., 15, 1101–1111 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima, N., “The role of the Atg1/ULK1 complex in autophagy regulation,” Curr. Opin. Cell Biol., 22, 132–139 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Sanjuan, L. and Bates, G. P., “The importance of integrating basic and clinical research toward the development of new therapies for Huntington disease,” J. Clin. Invest., 121, 476–483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nah, J., Yuan, J., and Jung, Y. K., “Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach,” Mol. Cells, 38, No. 5, 381–389 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narendra, D., Tanaka, A., Suen, D. E., and Youle, R. J., “Parkin is recruited selectively to impaired mitochondria and promotes their autophagy,” J. Cell Biol., 183, No. 5, 795–803 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nijholt, D. A. T., De Kimpe, L., Elfrink, H. L., et al., “Removing protein aggregates: the role of proteolysis in neurodegeneration,” Curr. Med. Chem., 18, No. 16, 2459–2476 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Nikoletopoulou, V., Papandreou, M., and Tavernarakis, N., “Autophagy in the physiology and pathology of the central nervous system,” Cell Death Differ., 22, No. 3, 398–407 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Nixon, R. A. and Yang, D. S., “Autophagy failure in Alzheimer’s diseased locating the primary defect,” Neurobiol. Dis., 43, 38–45 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochaba, J., Lukacsovich, T., Csikos, G., et al., “Potential function for the Huntingtin protein as a scaffold for selective autophagy,” Proc. Natl. Acad. Sci. USA, 111, No. 47, 16889–16894 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olzmann, J. A. and Chin, L. S., “Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway,” Autophagy, 4, 85–87 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Opipari, A. W., Jr., Tan, L., Boitano, A. E., et al., “Resveratrol-induced autophagocytosis in ovarian cancer tells,” Cancer Res., 64, No. 2, 696–703 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Orenstein, S. J. and Cuervo, A. M., “Chaperone-mediated autophagy: molecular mechanisms and physiological relevance,” Semin. Cell. Dev. Biol., 21, No. 7, 719–726 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pankiv, S., Clausen, T. H., Lamark, T., et al., “p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy,” J. Biol. Chem., 282, 24131–24145 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Paxinou, E., Chen, Q., Weisse, M., et al., “Induction of α-synuclein aggregation by intracellular nitrative insult,” J. Neurosci., 21, No. 20, 8053–8061 (2001).

    CAS  PubMed  Google Scholar 

  • Petherick, K. J., Williams, A. C., Lane, I. D., et al., “Autolysosomal 13-catenin degradation regulates Wnt-autophagy-p62 crosstalk,” EMBO J., 32, 1903–1916 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrucelli, L., Dickson, D., Kehoe, K., et al., “CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation,” Hum. Mol. Genet., 13, No. 7, 703–714 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Pickford, E., Masliah, E., Britschgi, M., et al., “The autophagy related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice,” J. Clin. Invest., 118, 2190–2199 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pivtoraiko, V. N., Harrington, A. J., Mader, B. J., et al., “Low-dose bafi lomycin attenuates neuronal tell death associated with autophagy-lysosome pathway dysfunction,” J. Neurochem., 114, No. 4, 1193–1204 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polito, V. A., Li, H., Martini-Stoica, H., et al., “Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB,” EMBO Mol. Med., 6, No. 9, 1142–1160 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi, L., Zhang, X. D., Wu, J. C., et al., “The role of chaperon-mediated autophagy in huntingtin degradation,” PLoS One, 7, e46834 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin, Z. H., Wang, Y. M., Kegel, K. B., et al., “Autophagy regulates the processing of amino terminal huntingtin fragments,” Hum. Mol. Genet., 12, 3231–3244 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Ravid, T. and Hochstrasser, M., “Diversity of degradation signals in the ubiquitin-proteasome system,” Nat. Rev. Mol. Cell. Biol., 9, No. 9, 679–690 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravikumar, B., Sarkar, S., Davies, I. E., et al., “Regulation of mammalian autophagy in physiology and pathophysiology,” Physiol. Rev., 90, No. 4, 1383–1435 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar, B., Vacher, C., Berger, Z., et al., “Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease,” Nat. Genet., 36, No. 6, 585–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Recasens, A. and Dehay, B., “Alpha-synuclein spreading in Parkinson’s disease,” Front. Neuroanat., 8, 159 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Richter-Landsberg, C. and Leyk, J., “Inclusion body formation, macroautophagy, and the role of HDAC6 in neurodegeneration,” Acta Neuropathol., 126, No. 6, 793–807 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Gonzalez, A., Lin, T., Ikeda, A. K., et al., “Role of the aggresome pathway in cancer: targeting histone deacetylase 6-dependent protein degradation,” Cancer Res., 68, 2557–2560 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Navarro, J. A. and Cuervo, A. M., “Autophagy and lipids: tightening the knot,” Semin. Immunopathol., 32, 343–353 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Navarro, J. A., Rodriguez, L., Casarejos, M. J., et al., “Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation,” Neurobiol. Dis., 39, No. 3, 423–438 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Rogov, V., Dotsch, V., Johansen, T., and Kirkin, V., “Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy,” Mol. Cell., 53, No. 2, 167–178 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Rohn, T. T., Wirawan, E., Brown, R. I., et al., “Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer’s disease brain,” Neurobiol. Dis., 43, 68–78 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Rose, C., Menzies, F. M., Renna, M., et al., “Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington’s disease,” Hum. Mol. Genet., 19, 2144–2153 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubinsztein, D. C., “The roles of intracellular protein degradation pathways in neurodegeneration,” Nature, 43, No. 7113, 780–786 (2006).

    Article  CAS  Google Scholar 

  • Rubinsztein, D. C., Marino, G., and Kroemer, G., “Autophagy and aging,” Cell, 146, 682–695 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Sarkar, S., “Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers,” Biochem. Soc. Trans., 41, 1103–1130 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Sarkar, S., Davies, J. E., Huang, Z., et al., “Trehalose, a novel mTOR independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein,” J. Biol. Chem., 282, 5641–5652 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Sarkar, S., Floto, R. A., Berger, Z., et al., “Lithium induces autophagy by inhibiting inositol monophosphatase,” J. Cell Biol., 170, 1101e1111 (2005).

    Article  CAS  Google Scholar 

  • Sarkar, S., Krishna, G., Imarisio, S., et al., “A rational mechanism for combination treatment of Huntington’s disease using lithium and rapamycin,” Hum. Mol. Genet., 17, 170–178 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Schreiber, A. and Peter, M., “Substrate recognition in selective autophagy and the ubiquitin-proteasome system,” Biochem. Biophys. Acta, 1843, No. 1, 163–181 (2013).

    Article  PubMed  CAS  Google Scholar 

  • Seidel, K., Schöls, L., Nuber, S., et al., “First appraisal of brain pathology owing to A30P mutant alpha-synuclein,” Ann. Neurol., 67, 684–689 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Settembre, C., Di Malta, C., Polito, et al., “TFEB links autophagy to lysosomal biogenesis,” Science, 332, No. 6036, 1429–1433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidransky, E., Nails, M. A., Aasly, J. O., et al., “Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease,” New Engl. J. Med., 361, No. 17, 1651–1661 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, K., Le, N., Alotaibi, M., and Gewirtz, D. A., “Cytotoxic autophagy in cancer therapy,” Int. J. Mol. Sci., 15, 10034–10051 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen, H. M., and Codogno, P., “Autophagic cell death: Loch Ness monster or endangered species?” Autophagy, 7, No. 5, 457–465 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Shen, Y. F., Tang, Y., Zhang, X. J., et al., “Adaptive changes in autophagy after UPS impairment in Parkinson’s disease,” Acta Pharmacol. Sin., 34, 667–673 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata, M., Lu, T., Furuya, T., et al., “Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1,” J. Biol. Chem., 281, 14474–14485 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Shimizu, S., Kanaseki, T., Mizushima, N., et al., “Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes,” Nat. Cell. Biol., 6, No. 12, 1221–1228 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Shoji-Kawata, S., Sumpter, R., Leveno, M., et al., “Identification of a candidate therapeutic autophagy inducing peptide,” Nature, 494, No. 7436, 201–206 (2013).

  • Singh, S. K., Srivastav, S., Yadav, A. K., et al., “Overview of Alzheimer’s disease and some therapeutic approaches targeting Aβ by using several synthetic and herbal compounds,” Oxid. Med. Cell. Longev., 2016, 7361613 (2016).

  • Singleton, A. B., Farrer, M., Johnson, J., et al., “α-Synuclein locus triplication causes Parkinson’s disease,” Science, 302, No. 5646, 841 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Smaili, S. S., Ureshino, R. P., Rodrigues, L., et al., “The role of mitochondrial function in glutamate-dependent metabolism in neuronal cells,” Curr. Pharm. Des., 17, 3865–3877 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Spencer, B., Potkar, R., Trejo, M., et al., “Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in α-synuclein models of Parkinson’s and Lewy body diseases,” J. Neurosci., 29, 13,578–13,588 (2009).

    Article  CAS  Google Scholar 

  • Spilman, P., Podlutskaya, N., Hart, M. J., et al., “Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-13 levels in a mouse model of Alzheimer’s disease,” PLoS One, 5, No. 4, e9979 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steele, J. W. and Gandy, S., “Latrepirdine (Dimebon®), a potential Alzheimer therapeutic, regulates autophagy and neuropathology in an Alzheimer mouse model,” Autophagy, 9, 617–618 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulzer, D., Mosharov, E., Talloczy, Z., et al., “Neuronal pigmented autophagic vacuoles: lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease,” J. Neurochem., 106, No. 1, 24–36 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Tai, H. C., Serrano-Pozo, A., Hashimoto, T., et al., “The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system,” Am. J. Pathol., 181, 1426–1435 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, C. C., Yu, J. T., Tan, M. S., et al., “Autophagy in aging and neuro-degenerative diseases: implications for pathogenesis and therapy,” Neurobiol. Aging, 35, No. 5, 941–957 (2014).

    Article  PubMed  Google Scholar 

  • Tanaka, M., Machida, Y., Niu, S., et al., “Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease,” Nat. Med., 10, 148–154 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Taylor, R. C. and Dillin, A., “Aging as an event of proteostasis collapse,” Cold Spring Harb. Perspect. Biol., 3, No. 5 (2011); pii: a004440

  • Thompson, L. M., Aiken, C. T., Kaltenbach, L. S., et al., “IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome,” J. Cell Biol., 187(7), 1083–1099 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thoreen, C. C., Kang, S. A., Chang, J. W., et al., “An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1,” J. Biol. Chem., 284, 8023–8032 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thurston, T. L., Wandel, M. P., von Muhlinen, N., et al., “Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion,” Nature, 482, 414–418 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, Y., Bustos, V., Flajolet, M., and Greengard, P., “A small molecule enhancer of autophagy decreases levels of Abeta and APP-CTF via Atg5-dependent autophagy pathway,” FASEB J., 25, 1934–1942 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tofaris, G. K., Kim, H. T., Hourez, R., et al., “Ubiquitin ligase Nedd4 promotes alpha-synuclein degradation by the endosomal-lysosomal pathway,” Proc. Natl. Acad. Sci. USA, 108, 17004–17009 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trimmer, P. A. and Bennett, J. P., Jr., “The cybrid model of sporadic Parkinson’s disease,” Exp. Neurol., 218, 320–325 (2009).

  • Tsvetkov, A. S., Miller, J., Arrasate, M., et al., “A small-molecule scaffold induces autophagy in primary neurons and protects against toxicity in a Huntington disease model,” Proc. Natl. Acad. Sci. USA, 107, 16982–16987 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsunemi, T., Ashe, T. D., Morrison, B. E., et al., “PGC-1alpha rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function,” Sci. Transl. Med., 4, 142ra197 (2012).

    Article  CAS  Google Scholar 

  • Ulbricht, A., Arndt, V., and Höhfeld, J., “Chaperone-assisted proteostasis is essential for mechanotransduction in mammalian cells,” Commun. Integr. Biol., 6, e24925 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Underwood, B. R., Imarisio, S., Fleming, A., et al., “Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease,” Hum. Mol. Genet., 19, No. 17, 3413–3429 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uversky, V. N., “Neuropathology, biochemistry, and biophysics of α-synuclein aggregation,” J. Neurochem., 103, No. 1, 17–37 (2007).

    CAS  PubMed  Google Scholar 

  • Vidal, R. L., Matus, S., Bargsted, L., and Hetz, C., “Targeting autophagy in neurodegenerative diseases,” Trends Pharmacol. Sci., 35, No. 11, 583–591 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Vingtdeux, V., Chandakkar, P., Zhao, H., et al., “Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-beta peptide degradation,” FASEB J., 25, 219–231 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vingtdeux, V., Giliberto, L., Zhao, H., et al., “AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism,” J. Biol. Chem., 285, 9100–9113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogiatzi, T., Xilouri, M., Vekrellis, K., and Stefanis, L., “Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells,” J. Biol. Chem., 283, No. 35, 23542–23556 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, P., Guan, Y. E., Du, H., et al., “Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia,” Autophagy, 8, 77–87 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Wang, D. W., Peng, Z. I., Ren, G. E., and Wang, G. X., “The different roles of selective autophagic protein degradation in mammalian cells,” Oncotarget, 6, No. 35, 37,098–37,116 (2015).

    Google Scholar 

  • Wang, P., Li, B., Zhou, L., et al., “The kdel receptor induces autophagy to promote the clearance of neurodegenerative disease-related proteins,” Neuroscience, 190, 43–55 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Martinez-Vicente, M., Krüger, U., et al., “Synergy and antagonism of macroautophagy and chaperone-mediated autophagy in a cell model of pathological tau aggregation,” Autophagy, 6, No. 1, 182–183 (2010).

    Article  PubMed  Google Scholar 

  • Ward, S. M., Himmelstein, D. S., Lancia, J. K., and Binder, L. I., “Tau oligomers and tau toxicity in neurodegenerative disease,” Biochem. Soc. Trans., 40, 667–671 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb, J. L., Ravikumar, B., Atkins, J., et al., “Alpha-synuclein is degraded by both autophagy and the proteasome,” J. Biol. Chem., 278, 25009–25013 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Weidberg, H., Shvets, E., and Elazar, Z., “Biogenesis and cargo selectivity of autophagosomes,” Annu. Rev. Biochem., 80, 125–156 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Wild, P., Farhan, H., McEwan, D. G., et al., “Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth,” Science, 333, No. 6039, 228–233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams, A., Sarkar, S., Cuddon, P., et al., “Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway,” Nat. Chem. Biol., 4, No. 5, 295305 (2008).

    Article  CAS  Google Scholar 

  • Williams, A. J. and Paulson, H. L., “Polyglutamine neurodegeneration: protein misfolding revisited,” Trends Neurosci., 31, 521–528 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winslow, A. R., Chen, C.-W., Corrochano, S., et al., “α-Synuclein impairs macroautophagy: implications for Parkinson’s disease,” J. Cell Biol., 190, No. 6, 1023–1037 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong, K., Sidransky, E., Verma, A., et al., “Neuropathology provides clues to the pathophysiology of Gaucher disease,” Mol. Genet. Metab., 82, No. 3, 192–207 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y., Li, X., Zhu, L. X., et al., “Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease,” Neurosignals, 19, 163–174 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, Q., Yan, P., Ma, X., et al., “Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis,” J. Neurosci., 34, No. 29, 9607–9620 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xilouri, M., Brekk, O. R., Landeck, N., et al., “Boosting chaperone-mediated autophagy in vivo mitigates α-synuclein-induced neurodegeneration,” Brain, 136, 2130–2146 (2013).

    Article  PubMed  Google Scholar 

  • Xilouri, M., Vogiatzi, T., Vekrellis, K., et al., “Aberrant α-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy,” PLoS One, 4, e5515 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xilouri, M. and Stefanis, L., “Autophagy in the central nervous system: implications for neurodegenerative disorders,” CNS Neurol. Disord. Drug Targets, 9, No. 6, 701–719 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Xiong, N., Xiong, J., Jia, M., et al., “The role of autophagy in Parkinson’s disease: rotenone-based modeling,” Behav. Brain Funct., 9, 13 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, L., McPhee, C. K., Zheng, L., et al., “Termination of autophagy and reformation of lysosomes regulated by mTOR,” Nature, 465, 942–946 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, S. W., Baek, S. H., Brennan, R. T., et al., “Autophagic death of adult hippocampal neural stem cells following insulin withdrawal,” Stem Cells, 26, No. 10, 2602–2610 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Yu, W. H., Cuervo, A. M., Kumar, A., et al., “Macroautophagy – a novel β-amyloid peptide-generating pathway activated in Alzheimer’s disease,” J. Cell Biol., 171, No. 1, 87–98 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeigerer, A., Gilleron, J., Bogorad, R. L., et al., “Rab5 is necessary for the biogenesis of the endolysosomal system in vivo,” Nature, 485, 465–70 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Sun, Y., Fei, M., et al., “Disruption of chaperone-mediated autophagy-dependent degradation of MEF2A by oxidative stress-induced lysosome destabilization,” Autophagy, 10, 1015–1035 (2014a).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Chen, S., Song, L., et al., “MTOR-independent, autophagic enhancer trehalose prolongs motor neuron survival and ameliorates the autophagic flux defect in a mouse model of amyotrophic lateral sclerosis,” Autophagy, 10, No. 4, 588–602 (2014b).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X. J., Chen, S., Huang, K. X., and Le, W. D., “Why should autophagic flux be assessed?” Acta Pharmacol. Sin., 34, 595–599 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, Z., Yan, J., Jiang, W., et al., “Arctigenin effectively ameliorates memory impairment in Alzheimer’s disease model mice targeting both beta-amyloid production and clearance,” J. Neurosci., 33, No. 32, 13138–13149 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Zuccato, C., Valenza, M., and Cattaneo, E., “Molecular mechanisms and potential therapeutical targets in Huntington’s disease,” Physiol. Rev., 90, No. 3, 905–981 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Pupyshev.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 66, No. 5, pp. 515–540, September–October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pupyshev, A.B., Korolenko, T.A. & Tikhonova, M.A. A Therapeutic Target for Inhibition of Neurodegeneration: Autophagy. Neurosci Behav Physi 47, 1109–1127 (2017). https://doi.org/10.1007/s11055-017-0519-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-017-0519-7

Keywords

Navigation