Skip to main content

Advertisement

Log in

Autophagy and lipids: tightening the knot

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The degradation of intracellular components in lysosomes, also known as autophagy, participates in a broad range of cellular functions from cellular quality control to cellular remodeling or as mechanism of defense against cellular aggressors. In this review, we focus on the role of autophagy as an alternative source of cellular energy, particularly important when nutrients are scarce. Almost since the discovery of autophagy, it has been known that amino acids obtained through the breakdown of proteins in lysosomes are essential to maintaining the cellular energetic balance during starvation. However, it is only recently that the ability of autophagy to mobilize intracellular lipid stores as an additional source of energy has been described. Autophagy contributes thus to modulating the amount of cellular lipids and allows cells to adapt to lipogenic stimuli. Interestingly, this interplay between autophagy and lipid metabolism is bidirectional, as changes in the intracellular lipid content also contribute to modulating autophagic activity. In this review, we describe the recent findings on the contribution of autophagy to lipid metabolism in different tissues and the consequences that impairments in autophagy have on cellular physiology. In addition, we comment on the regulatory role that lipid molecules and their modifying enzymes play on different steps of the autophagic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mizushima N, Levine B, Cuervo A, Klionsky D (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  CAS  PubMed  Google Scholar 

  2. Cuervo AM (2008) Autophagy and aging: keeping that old broom working. Trends Genet 24:604–612

    Article  CAS  PubMed  Google Scholar 

  3. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  CAS  PubMed  Google Scholar 

  4. Mizushima N (2005) The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ 12:1535–1541

    Article  CAS  PubMed  Google Scholar 

  5. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M et al (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135

    Article  CAS  PubMed  Google Scholar 

  6. Mizushima N, Ohsumi Y, Yoshimori T (2002) Autophagosome formation in mammalian cells. Cell Struct Funct 27:421–429

    Article  PubMed  Google Scholar 

  7. Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH (2009) The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 183:5909–5916

    Article  CAS  PubMed  Google Scholar 

  8. Okamoto K, Kondo-Okamoto N, Ohsumi Y (2009) Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17:87–97

    Article  CAS  PubMed  Google Scholar 

  9. Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W, Ishii J et al (2008) Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13:1211–1218

    Article  CAS  PubMed  Google Scholar 

  10. Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV et al (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545

    Article  CAS  PubMed  Google Scholar 

  11. Geng J, Klionsky DJ (2010) Determining Atg protein stoichiometry at the phagophore assembly site by fluorescence microscopy. Autophagy 6:144–147

    Article  CAS  PubMed  Google Scholar 

  12. Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335:1–32

    Article  CAS  PubMed  Google Scholar 

  13. Noda NN, Ohsumi Y, Inagaki F (2009) ATG systems from the protein structural point of view. Chem Rev 109:1587–1598

    Article  CAS  PubMed  Google Scholar 

  14. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  CAS  PubMed  Google Scholar 

  15. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  16. Mortimore GE, Lardeux BR, Adams CE (1988) Regulation of microautophagy and basal protein turnover in rat liver. Effects of short-term starvation. J Biol Chem 263:2506–2512

    CAS  PubMed  Google Scholar 

  17. Sakai Y, Koller A, Rangell LK, Keller GA, Subramani S (1998) Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates. J Cell Biol 141:625–636

    Article  CAS  PubMed  Google Scholar 

  18. Cuervo AM (2010) Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol Metab 21:142–150

    Article  CAS  PubMed  Google Scholar 

  19. Dice J (2007) Chaperone-mediated autophagy. Autophagy 3:295–299

    CAS  PubMed  Google Scholar 

  20. Cuervo A, Dice J (1996) A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273:501–503

    Article  CAS  PubMed  Google Scholar 

  21. Agarraberes F, Terlecky S, Dice J (1997) An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol 137:825–834

    Article  CAS  PubMed  Google Scholar 

  22. Salvador N, Aguado C, Horst M, Knecht E (2000) Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. J Biol Chem 275:27447–27456

    CAS  PubMed  Google Scholar 

  23. Mortimore GE, Pösö AR (1987) Intracellular protein catabolism and its control during nutrient deprivation and supply. Ann Rev Nutr 7:539–564

    Article  CAS  Google Scholar 

  24. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T et al (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036

    Article  CAS  PubMed  Google Scholar 

  25. Walther TC, Farese RV Jr (2009) The life of lipid droplets. Biochim Biophys Acta 1791:459–466

    CAS  PubMed  Google Scholar 

  26. Olofsson SO, Bostrom P, Andersson L, Rutberg M, Perman J, Boren J (2009) Lipid droplets as dynamic organelles connecting storage and efflux of lipids. Biochim Biophys Acta 1791:448–458

    CAS  PubMed  Google Scholar 

  27. Koga H, Kaushik S, Cuervo AM (2010) Altered lipid content inhibits autophagic vesicular fusion. FASEB J 24:3052–3065

    Google Scholar 

  28. Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, de Vries R, et al (2010) Cargo recognition failure is responsible for inefficient autophagy in Huntington’s Disease. Nat Neurosci 13:567–576

    Google Scholar 

  29. Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S (2009) Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci USA 106:19860–19865

    CAS  PubMed  Google Scholar 

  30. Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK et al (2009) Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 119:3329–3339

    Article  CAS  PubMed  Google Scholar 

  31. Shibata M, Yoshimura K, Tamura H, Ueno T, Nishimura T, Inoue T et al (2010) LC3, a microtubule-associated protein1A/B light chain3, is involved in cytoplasmic lipid droplet formation. Biochem Biophys Res Commun 393:274–279

    Article  CAS  PubMed  Google Scholar 

  32. Nice DC, Sato TK, Stromhaug PE, Emr SD, Klionsky DJ (2002) Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. J Biol Chem 277:30198–30207

    Article  CAS  PubMed  Google Scholar 

  33. Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A et al (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701

    Article  CAS  PubMed  Google Scholar 

  34. Gillooly DJ, Morrow IC, Lindsay M, Gould R, Bryant NJ, Gaullier JM et al (2000) Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 19:4577–4588

    Article  CAS  PubMed  Google Scholar 

  35. Obara K, Ohsumi Y (2008) Dynamics and function of PtdIns(3)P in autophagy. Autophagy 4:952–954

    CAS  PubMed  Google Scholar 

  36. Obara K, Sekito T, Niimi K, Ohsumi Y (2008) The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J Biol Chem 283:23972–23980

    Article  CAS  PubMed  Google Scholar 

  37. Obara K, Sekito T, Ohsumi Y (2006) Assortment of phosphatidylinositol 3-kinase complexes–Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Mol Biol Cell 17:1527–1539

    Article  CAS  PubMed  Google Scholar 

  38. Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A (2010) Electron tomography reveals the endoplasmic reticulum as a membrane source for autophagosome formation. Autophagy 6:301–303

    Article  CAS  PubMed  Google Scholar 

  39. Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11:1433–1437

    Article  CAS  PubMed  Google Scholar 

  40. Seglen P, Gordon P (1982) 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated hepatocytes. Proc Nat Acad Sci USA 79:1889–1892

    Article  CAS  PubMed  Google Scholar 

  41. Lindmo K, Stenmark H (2006) Regulation of membrane traffic by phosphoinositide 3-kinases. J Cell Sci 119:605–614

    Article  CAS  PubMed  Google Scholar 

  42. Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275:992–998

    Article  CAS  PubMed  Google Scholar 

  43. Juhasz G, Hill JH, Yan Y, Sass M, Baehrecke EH, Backer JM et al (2008) The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J Cell Biol 181:655–666

    Article  CAS  PubMed  Google Scholar 

  44. Simonsen A, Tooze SA (2009) Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J Cell Biol 186:773–782

    Article  CAS  PubMed  Google Scholar 

  45. Itakura E, Kishi C, Inoue K, Mizushima N (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19:5360–5372

    Article  CAS  PubMed  Google Scholar 

  46. Pattingre S, Tassa A, Qu X, Garuti R, Huan Liang X, Mizushima N et al (2005) Bcl-2 Antiapoptotic Proteins Inhibit Beclin 1-Dependent Autophagy. Cell 122:927–939

    Article  CAS  PubMed  Google Scholar 

  47. Miller S, Tavshanjian B, Oleksy A, Perisic O, Houseman BT, Shokat KM et al (2010) Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science 327:1638–1642

    Article  CAS  PubMed  Google Scholar 

  48. Clague MJ, Lorenzo O (2005) The myotubularin family of lipid phosphatases. Traffic 6:1063–1069

    Article  CAS  PubMed  Google Scholar 

  49. Lorenzo O, Urbe S, Clague MJ (2005) Analysis of phosphoinositide binding domain properties within the myotubularin-related protein MTMR3. J Cell Sci 118:2005–2012

    Article  CAS  PubMed  Google Scholar 

  50. Vergne I, Roberts E, Elmaoued RA, Tosch V, Delgado MA, Proikas-Cezanne T et al (2009) Control of autophagy initiation by phosphoinositide 3-phosphatase jumpy. EMBO J 28:2244–2258

    Article  CAS  PubMed  Google Scholar 

  51. Taguchi-Atarashi N, Hamasaki M, Matsunaga K, Omori H, Ktistakis NT, Yoshimori T et al (2010) Modulation of local PtdIns3P levels by the PI phosphatase MTMR3 regulates constitutive autophagy. Traffic 11:468–478

    Article  CAS  PubMed  Google Scholar 

  52. Nair U, Cao Y, Xie Z, Klionsky DJ (2010) The roles of the lipid-binding motifs of Atg18 and Atg21 in the cytoplasm to vacuole targeting pathway and autophagy. J Biol Chem 285:11476–11488

    Article  CAS  PubMed  Google Scholar 

  53. Stromhaug PE, Reggiori F, Guan J, Wang CW, Klionsky DJ (2004) Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol Biol Cell 15:3553–3566

    Article  CAS  PubMed  Google Scholar 

  54. Proikas-Cezanne T, Waddell S, Gaugel A, Frickey T, Lupas A, Nordheim A (2004) WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene 23:9314–9325

    Article  CAS  PubMed  Google Scholar 

  55. Jeffries TR, Dove SK, Michell RH, Parker PJ (2004) PtdIns-specific MPR pathway association of a novel WD40 repeat protein, WIPI49. Mol Biol Cell 15:2652–2663

    Article  CAS  PubMed  Google Scholar 

  56. Pankiv S, Alemu EA, Brech A, Bruun JA, Lamark T, Overvatn A, et al (2010) FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J Cell Biol 188:253–269

    Google Scholar 

  57. Ano Y, Hattori T, Oku M, Mukaiyama H, Baba M, Ohsumi Y et al (2005) A sorting nexin PpAtg24 regulates vacuolar membrane dynamics during pexophagy via binding to phosphatidylinositol-3-phosphate. Mol Biol Cell 16:446–457

    Article  CAS  PubMed  Google Scholar 

  58. Clausen TH, Lamark T, Isakson P, Finley K, Larsen KB, Brech A, et al (2010) p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy. Autophagy 6:330–344

    Google Scholar 

  59. Simonsen A, Birkeland HC, Gillooly DJ, Mizushima N, Kuma A, Yoshimori T et al (2004) Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. J Cell Sci 117:4239–4251

    Article  CAS  PubMed  Google Scholar 

  60. Dove SK, Dong K, Kobayashi T, Williams FK, Michell RH (2009) Phosphatidylinositol 3, 5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function. Biochem J 419:1–13

    Article  CAS  PubMed  Google Scholar 

  61. Jin N, Chow CY, Liu L, Zolov SN, Bronson R, Davisson M et al (2008) VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3, 5)P(2) in yeast and mouse. EMBO J 27:3221–3234

    Article  CAS  PubMed  Google Scholar 

  62. Duex JE, Tang F, Weisman LS (2006) The Vac14p-Fig4p complex acts independently of Vac7p and couples PI3, 5P2 synthesis and turnover. J Cell Biol 172:693–704

    Article  CAS  PubMed  Google Scholar 

  63. de Lartigue J, Polson H, Feldman M, Shokat K, Tooze SA, Urbe S et al (2009) PIKfyve regulation of endosome-linked pathways. Traffic 10:883–893

    Article  PubMed  Google Scholar 

  64. Ferguson CJ, Lenk GM, Meisler MH (2009) Defective autophagy in neurons and astrocytes from mice deficient in PI(3, 5)P2. Hum Mol Genet 18:4868–4878

    Article  CAS  PubMed  Google Scholar 

  65. Bi X, Liao G (2007) Autophagic-lysosomal dysfunction and neurodegeneration in Niemann-Pick Type C mice: lipid starvation or indigestion? Autophagy 3:646–648

    CAS  PubMed  Google Scholar 

  66. Liao G, Yao Y, Liu J, Yu Z, Cheung S, Xie A et al (2007) Cholesterol accumulation is associated with lysosomal dysfunction and autophagic stress in Npc1 -/- mouse brain. Am J Pathol 171:962–975

    Article  CAS  PubMed  Google Scholar 

  67. Pacheco CD, Kunkel R, Lieberman AP (2007) Autophagy in Niemann-Pick C disease is dependent upon Beclin-1 and responsive to lipid trafficking defects. Hum Mol Genet 16:1495–1503

    Article  CAS  PubMed  Google Scholar 

  68. Cheng J, Ohsaki Y, Tauchi-Sato K, Fujita A, Fujimoto T (2006) Cholesterol depletion induces autophagy. Biochem Biophys Res Commun 351:246–252

    Article  CAS  PubMed  Google Scholar 

  69. Kaushik S, Massey AC, Cuervo AM (2006) Lysosome membrane lipid microdomains: novel regulators of chaperone-mediated autophagy. EMBO J 25:3921–3933

    Article  CAS  PubMed  Google Scholar 

  70. Cuervo AM, Mann L, Bonten E, d’Azzo A, Dice J (2003) Cathepsin A regulates chaperone-mediated autophagy through cleavage of the lysosomal receptor. EMBO J 22:12–19

    Article  Google Scholar 

  71. Kiffin R, Kaushik S, Zeng M, Bandyopadhyay U, Zhang C, Massey AC et al (2007) Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age. J Cell Sci 120:782–791

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Susmita Kaushik and Ms. Samantha J. Orenstein for critically reviewing this manuscript. Work in our laboratory is supported by National Institute of Health grants from National Institute on Aging (AG021904, AG031782), National Institute of Diabetes and Digestive and Kidney Diseases (DK041918), National Institute of Neurological Disorders and Stroke (NS038370), a Glenn Foundation Award, and a Hirsch/Weill-Caulier Career Scientist Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Cuervo.

Additional information

This article is published as part of the Special Issue on Autophagy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez-Navarro, J.A., Cuervo, A.M. Autophagy and lipids: tightening the knot. Semin Immunopathol 32, 343–353 (2010). https://doi.org/10.1007/s00281-010-0219-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-010-0219-7

Keywords

Navigation