Skip to main content
Log in

Possible Mechanisms for the Effects of Orexin on Hippocampal Functioning and Spatial Learning (analytical review)

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

We present here an analysis of the possible mechanisms for the effects of the “waking hormone” orexin on spatial learning, mediated by changes in the functioning of the hippocampus and structures connected to it. Published data indicate firstly that orexin can directly increase neuron excitation in different hippocampal fields, acting on Gq/11-protein-coupled postsynaptic OX1 and OX2 receptors. By facilitating the induction of long-term potentiation of excitatory transmission in each component of the trisynaptic pathway via the hippocampus, orexin can promote transmission of information through this structure and form neuronal reflections of “object-place” associations. Secondly, orexin can increase the release of acetylcholine, GABA, and glutamate in the hippocampus by potentiating excitation of neurons in the medial septum, which bear OX1 and OX2 receptors. This can result in changes in the extent and frequency of the hippocampal theta rhythm. Thirdly, orexin can affect the functional reinforcement circuit, which includes neurons in the hippocampus, prefrontal cortex, amygdala, ventral striatum, and ventral tegmental area, directly modulating their activity via OX receptors. Acting via increases in the activity of dopaminergic cells and increases in dopamine release, orexin can alter the nature of the functioning of the basal ganglia, improve the functioning of reinforcement circuits, and facilitate spatial learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. F. Kichigina, “Dopaminergic regulation of theta activity in septohippocampal neurons in awake rabbits,” Zh. Vyssh. Nerv. Deyat., 54, No. 2, 210–215 (2004).

    CAS  Google Scholar 

  2. V. F. Kichigina, “The mechanism of regulation and functional significance of the theta rhythm: the role of the serotoninergic and noradrenalinergic systems,” Zh. Vyssh. Nerv. Deyat., 54, No. 1, 101–119 (2004).

    CAS  Google Scholar 

  3. V. M. Koval’zon, Basic Somnology [in Russian], Binom, Moscow (2011).

    Google Scholar 

  4. I. G. Sil’kis, “Involvement of the trisynaptic hippocampal pathway in forming neuronal reflections of ‘object-place’ associations (an analytical review),” Zh. Vyssh. Nerv. Deyat., 59, No. 6, 645–661 (2009).

    Google Scholar 

  5. I. G. Sil’kis, “Mechanisms of the effects of dopamine via the basal ganglia on the septohippocampal theta rhythm,” Neirokhimiya, 25, No. 3, 184–190 (2008).

    Google Scholar 

  6. I. G. Sil’kis, “A unified postsynaptic mechanism for the influences of different neurotransmitters on the modification of excitatory and inhibitory inputs to hippocampal neurons (a hypothesis),” Usp. Fiziol. Nauk, 33, No. 1, 40–56 (2002).

    PubMed  Google Scholar 

  7. I. G. Sil’kis, “A possible mechanism for the influences of neurotransmitters and modifiable inhibition on long-term potentiation and depression of the excitatory inputs to main neurons in the hippocampus,” Zh. Vyssh. Nerv. Deyat., 52, No. 4, 392–405 (2002).

    Google Scholar 

  8. A. Adamantidis and L. de Lecea, “Physiological arousal: a role for hypothalamic systems,” Cell Mol. Life Sci., 65, No. 10, 1475–1488 (2008).

    Article  PubMed  CAS  Google Scholar 

  9. E. Akbari, F. Motamedi, F. G. Davoodi, et al., “Orexin-1 receptor mediates long-term potentiation in the dentate gyrus area of freely moving rats,” Behav. Brain Res., 216, No. 1, 375–380 (2011).

    Article  PubMed  CAS  Google Scholar 

  10. E. Akbari, N. Naghdi, and F. Motamedi, “The selective orexin 1 receptor antagonist SB-334867-A impairs acquisition and consolidation but not retrieval of spatial memory in Morris water maze,” Peptides, 28, No. 3, 650–656 (2007).

    Article  PubMed  CAS  Google Scholar 

  11. E. Akbari, N. Naghdi, and F. Motamedi, “Functional inactivation of orexin 1 receptors in CA1 region impairs acquisition, consolidation and retrieval in Morris water maze task,” Behav. Brain Res., 173, No. 1, 47–52 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. A. Alonso and C. Kohler, “A study of the reciprocal connections between the septum and the entorhinal area using anterograde and retrograde axonal transport methods in the rat brain,” J. Comp. Neurol., 225, No. 3, 327–343 (1984).

    Article  PubMed  CAS  Google Scholar 

  13. S. Aou, X. L. Li, A. J. Li, et al., “Orexin-A (hypocretin-I) impairs Morris water maze performance and CA1-Schaffer collateral longterm potentiation in rats,” Neurosci., 119, No. 4, 1221–1228 (2003).

    Article  CAS  Google Scholar 

  14. S. Bastianni, A. Silvani, C. Berteotti, et al., “High-amplitude theta wave bursts during REM sleep and cataplexy in hypocretin-deficient narcoleptic mice,” J. Sleep Res., 21, No. 2, 185–188 (2011); 10.1111/j.1365-2869.2011.00945.x.

    Article  Google Scholar 

  15. L. Bayer, E. Eggermann, M. Serafin, et al., “Opposite effects of noradrenaline and acetylcholine upon hypocretin/orexin versus melanin concentrating hormone neurons in rat hypothalamic slices,” Neurosci., 130, No. 4, 807–811 (2005).

    Article  CAS  Google Scholar 

  16. L. Bayer, M. Serafin, E. Eggermann, et al., “Exclusive postsynaptic action of hypocretin-orexin on sublayer 6b cortical neurons,” J. Neurosci., 24, No. 30, 6760–6764 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. B. H. Bland, S. Declerck, J. Jackson, et al., “Septohippocampal properties of N-methyl-D-aspartate-induced theta-band oscillation and synchrony,” Synapse, 61, No. 3, 185–(1997). (2007).

  18. B. H. Bland and S. Oddie, “Anatomical, electrophysiological and pharmacological studies of ascending brainstem hippocampal synchronizing pathways,” Neurosci. Biobehav. Res., 22, No. 2, 259–273 (1998).

    Article  CAS  Google Scholar 

  19. S. L. Borgland, E. Storm, and A. Bonci, “Orexin B/hypocretin 2 increases glutamatergic transmission to ventral tegmental area neurons,” Eur. J. Neurosci., 28, No. 8, 1545–1556 (2008).

    Article  PubMed  CAS  Google Scholar 

  20. E. S. Brazhnik and S. E. Fox, “Action potentials and relations to the theta rhythm of medial septal neurons in vivo,” Exp. Brain Res., 127, No. 3, 244–258 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. G. Buszaki, “Theta oscillations in the hippocampus,” Neuron, 33, No. 3, 325–340 (2002).

    Article  Google Scholar 

  22. A. M. Cason, R. J. Smith, P. Tahsili-Fahadan, et al., “Role of orexin/hypocretin in reward-seeking and addiction: implications for obesity,” Physiol. Behav., 100, No. 5, 419–428 (2010).

    Article  PubMed  CAS  Google Scholar 

  23. Q. Chang and P. E. Gold, “Impaired and spared cholinergic functions in the hippocampus after lesions of the medial septum/vertical limb of the diagonal band with 192 IgG-saporin,” Hippocampus, 14, No. 2, 170–179 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. S. Datta, D. F. Siwek, E. H. Patterson, and P. B. Cipollini, “Localization of pontine PGO wave generation sites and their anatomical projections in the rat,” Synapse, 30, No. 4, 409–423 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. A. R. Di Sebastiano, H. E. Wilson-Pérez, M. N. Lehman, and L. M. Cohen, “Lesions of orexin neurons block conditioned place preference for sexual behavior in male rats,” Horm. Behav., 59, No. 1, 1–8 (2011).

    Article  PubMed  Google Scholar 

  26. H. Dietrich and J. Jenck, “Intact learning and memory in rats following treatment with the dual orexin receptor antagonist almorexant,” Psychopharmacology (Berlin), 212, No. 2, 145–154 (2010).

    Article  CAS  Google Scholar 

  27. N. Doreulee, M. Alania, M. Chikovani, et al., “Orexin-A induces long-term depression of NMDA responses in CA-1 field of hippocampal slices,” Georgian Med News, 169, 65–70 (2009).

    PubMed  Google Scholar 

  28. R. P. Gaykema, J. van der Kuil, L. B. Hersh, and P. G. Luiten, “Patterns of direct projections from the hippocampus to the medial septum-diagonal band complex: anterograde tracing with Phaseolus vulgaris leucoagglutinin combined with immunohistochemistry of choline acetyltransferase,” Neuroscience, 43, No. 2–3, 349–360 (1991).

    Article  PubMed  CAS  Google Scholar 

  29. D. Gerashchenko, R. Salin-Pascual, and P. J. Shiromani, “Effects of hypocretin-saporin injections into the medial septum on sleep and hippocampal beta,” Brain Res., 913, No. 1, 106–115 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. A. Gozzi, G. Turrini, L. Piccoli, et al., “Functional magnetic resonance imaging reveals different neural substrates for the effects of orexin-1 and orexin-2 receptor antagonists,” PLoS One, 6, No. 1, e16406 (2011).

    Article  PubMed  CAS  Google Scholar 

  31. A. E. Hallanger and B. H. Wainer, “Ascending projections from the pedunculopontine tegmental nucleus and the adjacent mesopontine tegmentum in the rat,” J. Comp. Neurol., 274, No. 4, 483–515 (1988).

    Article  PubMed  CAS  Google Scholar 

  32. T. Holmqvist, L. Johansson, M. Ostman, et al., “OX1 orexin receptors couple to adenylyl cyclase regulation via multiple mechanisms,” J. Biol. Chem., 280, No. 8, 6570–6579 (2005).

    Article  PubMed  CAS  Google Scholar 

  33. J. P. Kukkonen, T. Holmqvist, S. Ammoun, and K. A. Akerman, “Functions of the orexinergic/hypocretinergic system,” Am. J. Physiol. Cell. Physiol., 283, No. 6, C1567–C1591 (2002).

    Article  PubMed  CAS  Google Scholar 

  34. L. Lecourtier, A. P. de Vasconcelos, E. Leroux, et al., “Septohippocampal pathways contribute to system consolidation of a spatial memory: Sequential implication of GABAergic and cholinergic neurons,” Hippocampus, 21, No. 12, 1277–1289 (2011).

    Article  PubMed  CAS  Google Scholar 

  35. B. Li, F. Chen, J. Ye, et al., “The modulation of orexin A on HCN currents of pyramidal neurons in mouse prelimbic cortex,” Cereb. Cortex, 20, No. 7, 1756–1767 (2010).

    Article  PubMed  Google Scholar 

  36. R. J. Liu, A. N. van den Pol, and G. K. Aghajanian, “Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions,” J. Neurosci., 22, No. 21, 9453–9464 (2002).

    PubMed  CAS  Google Scholar 

  37. F. Lopes da Silva, “Neural mechanisms underlying brain waves: from neural membranes to networks,” EEG Clin. Neurophysiol., 79, No. 2, 81–93 (1991).

    Article  CAS  Google Scholar 

  38. R. G. Mair and J. R. Hembrook, “Memory enhancement with eventrelated stimulation of the rostral intralaminar thalamic nuclei,” J. Neurosci., 28, No. 52, 14293–14300 (2008).

    Article  PubMed  CAS  Google Scholar 

  39. J. N. Marcus, C. J. Aschkenasi, C. E. Lee, et al., “Differential expression of orexin receptors 1 and 2 in the rat brain,” J. Comp. Neurol., 435, No. 1, 6–25 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. G. J. Morales, E. J. Ramcharan, N. Sundararaman, et al., “Analysis of the actions of nucleus reuniens and the entorhinal cortex on EEG and evoked population behavior of the hippocampus,” Conf. Proc. IEEE Eng. Med. Biol. Soc., 2480–2484 (2007).

  41. K. Mori, J. Kim, and K. Sasaki, “Electrophysiological effects of orexin-B and dopamine on rat nucleus accumbens shell neurons in vitro,” Peptides, 32, No. 2, 246–252 (2011).

    Article  PubMed  CAS  Google Scholar 

  42. N. Nachkebia, E. Chkhartishvili, Sh. Dzadzamia, et al., “Septo-hippocampal cholinergic/GABAergic relationship and sleep-waking cycle,” Georgian Med. News, 157, 66–72 (2008).

    PubMed  Google Scholar 

  43. A. Nowacka, E. Jurkowlaniec, and W. Trojniar, “Microinjection of procaine into the pedunculopontine tegmental nucleus suppresses hippocampal theta rhythm in urethane-anesthetized rats,” Brain Res. Bull., 58, No. 4, 377–384 (2002).

    Article  PubMed  CAS  Google Scholar 

  44. D. Quarta, E. Valerio, D. M. Hutcheson, et al., “The orexin-1 receptor antagonist SB-334867 reduces amphetamine-evoked dopamine outflow in the shell of the nucleus accumbens and decreases the expression of amphetamine sensitization,” Neurochem. Int., 56, No. 1, 11–15 (2010)

    Article  PubMed  CAS  Google Scholar 

  45. P. Parra, A. J. Gulya’s, and R. Miles, “How many subtypes of inhibitory cells in the hippocampus?” Neuron, 20, No. 5, 983–993 (1998).

    Article  PubMed  CAS  Google Scholar 

  46. C. Peyron, D. K. Tighe,A. N. van den Pol, et al., “Neurons containing hypocretin (orexin) project to multiple neuronal systems,” J. Neurosci., 18, No. 23, 9996–10015 (1998).

    PubMed  CAS  Google Scholar 

  47. O. Schmitt, K. G. Usunoff, N. E. Lazarov, et al., “Orexinergic innervation of the extended amygdala and basal ganglia in the rat,” Brain Struct. Funct., 217, No. 2, 233–256 (2011).

    Article  PubMed  Google Scholar 

  48. O. Selbach, C. Bohla, A. Barbara, et al., “Orexins/hypocretins control bistability of hippocampal long-term synaptic plasticity through co-activation of multiple kinases,” Acta Physiol., 198, No. 3, 277–285 (2010).

    Article  CAS  Google Scholar 

  49. O. Selbach, N. Coreulee, C. Bohla, et al., “Orexins/hypocretins cause sharp wave- and theta-related synaptic plasticity in the hippocampus via glutamatergic, GABAergic, noradrenergic, and cholinergic signaling,” Neurosci., 127, No. 2, 519–528 (2004).

    Article  CAS  Google Scholar 

  50. R. Sharf, M. Sarhan, and R. J. Dileone, “Orexin mediates the expression of precipitated morphine withdrawal and concurrent activation of the nucleus accumbens shell,” Biol. Psychiatry, 64, No. 3, 175–183 (2008).

    Article  PubMed  CAS  Google Scholar 

  51. J. R. Shoblock, N. Welty, L. Aluisio, et al., “Selective blockade of the orexin-2 receptor attenuates ethanol self-administration, place preference, and reinstatement,” Psychopharmacology (Berlin), 215, No. 1, 191–203 (2011).

    Article  CAS  Google Scholar 

  52. H. R. Smith and K. C. Pang, “Orexin-saporin lesions of the medial septum impair spatial memory,” Neurosci., 132, No. 2, 261–271 (2005).

    Article  CAS  Google Scholar 

  53. J. W. Smythe, L. V. Colom, and B. H. Bland, “The extrinsic modulation of hippocampal theta depends on the coactivation of cholinergic and GABAergic medial septal inputs,” Neurosci. Biobehav. Res., 16, No. 3, 289–308 (1992).

    Article  CAS  Google Scholar 

  54. C. H. Song, X. W. Chen, J. X. Xia, et al., “Modulatory effects of hypocretin-1/orexin-A with glutamate and gamma-aminobutyric acid on freshly isolated pyramidal neurons from the rat prefrontal cortex,” Neurosci. Lett., 399, No. 1–2, 101–105 (2006).

    Article  PubMed  CAS  Google Scholar 

  55. E. M. Stanley and J. Fadel, “Aging-related deficits in orexin/hypocretin modulation of the septo-hippocampal cholinergic system,” Synapse (2011), doi: 10.1002/syn.21533.

  56. E. M. Stanley and J. R. Fadel, “Ageing-related alterations in orexinhypocretin modulation of septo-hippocampal amino acid neurotransmission,” Neurosci., 195, 70–79 (2011).

    Article  CAS  Google Scholar 

  57. L. W. Swanson, “The anatomical organization of septo-hippocampal projections,” Ciba Found. Symp., 58, No. 1, 25–48 (1977).

    PubMed  Google Scholar 

  58. A. J. Thorpe and C. M. Kotz, “Orexin A in the nucleus accumbens stimulates feeding and locomotor activity,” Brain Res., 1050, No. 1–2, 156–162 (2005).

    Article  PubMed  CAS  Google Scholar 

  59. K. Uramura, H. Funahashi, S. Muroya, et al., “Orexin-A activates phospholipase C- and protein kinase C-mediated Ca2+ signaling in dopamine neurons of the ventral tegmental area,” Neuroreport, 12, No. 9, 1885–1889 (2001).

    Article  PubMed  CAS  Google Scholar 

  60. O. S. Vinogradova, “Expression, control and probable functional significance of the neuronal theta rhythm,” Progr. Neurobiol., 45, No. 6, 523–583 (1995).

    Article  CAS  Google Scholar 

  61. N. M. Vittoz and C. W. Berridge, “Hypocretin/orexin selectively increases dopamine efflux within the prefrontal cortex: involvement of the ventral tegmental area,” Neuropsychopharmacology, 31, No. 2, 384–395 (2006).

    Article  PubMed  CAS  Google Scholar 

  62. M. J. Wayner, D. L. Armstrong, C. F. Phelix, and Y. Oomura, “Orexin-A (hypocretin-1) and leptin enhance LTP in the dentate gyrus of rats in vivo,” Peptides, 25 No. 6, 991–996 (2004).

    Article  PubMed  CAS  Google Scholar 

  63. M. A. Whittington, R. D. Traub, and J. G. R. Jeffreys, “Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation,” Nature, 373, No. 6515, 612–615 (1995).

    Article  PubMed  CAS  Google Scholar 

  64. C. J. Winrow, A. L. Gotter, C. D. Cox, et al., “Promotion of sleep by suvorexant – a novel dual orexin receptor antagonist,” J. Neurogenet., 25, No. 1–2, 52–61 (2011).

    Article  PubMed  CAS  Google Scholar 

  65. M. Wu, L. Zaborszky, T. Haiszan, et al., “Hypocretin/orexin innervation and excitation of identified septohippocampal cholinergic, neurons,” J. Neurosci., 24, No. 14, 3527–3536 (2004).

    Article  PubMed  CAS  Google Scholar 

  66. M. Wu, Z. Zhang, C. Leranth, et al., “Hypocretin increases impulse flow in the septohippocampal GABAergic pathway: implications for arousal via a mechanism of hippocampal disinhibition,” J. Neurosci., 22, No. 17, 7754–7765 (2002).

    PubMed  CAS  Google Scholar 

  67. J. Sia, X. Chen, C. Song, et al., “Postsynaptic excitation of prefrontal cortical pyramidal neurons by hypcretin-1/orexin A though the inhibition of potassium currents,” J. Neurosci. Res., 82, No. 5, 729–736 (2005).

    Article  Google Scholar 

  68. G. C. Zhang, L. M. Mao, C. Y. Liu, and J. Q. Wang, “Long-lasting up-regulation of orexin receptor type 2 protein levels in the rat nucleus accumbens after chronic cocaine administration,” J. Neurochem., 103, No. 1, 4004–407 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Sil’kis.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 62, No. 4, pp. 389–400, July–August, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sil’kis, I.G. Possible Mechanisms for the Effects of Orexin on Hippocampal Functioning and Spatial Learning (analytical review). Neurosci Behav Physi 43, 1049–1057 (2013). https://doi.org/10.1007/s11055-013-9849-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-013-9849-2

Keywords

Navigation