Skip to main content
Log in

Orexinergic innervation of the extended amygdala and basal ganglia in the rat

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The orexinergic system interacts with several functional states of emotions, stress, hunger, wakefulness and behavioral arousal through four pathways originating in the lateral hypothalamus (LH). Hundreds of orexinergic efferents have been described by tracing studies and direct immunohistochemistry of orexin in the forebrain, olfactory regions, hippocampus, amygdala, septum, basal ganglia, thalamus, hypothalamus, brain stem and spinal cord. Most of these tracing studies investigated the whole orexinergic projection to all regions of the intracranial part of the CNS. To identify the orexinergic efferents at the subnuclear level of resolution, we focussed on the orexinergic target in the amygdala, which is substantially involved in the LH output and contributes mostly to the functional outcome of the orexinergic system and the basal ganglia. Immunohistochemical identification of axonal orexin A and orexin B in male adult rats has been performed on serial sections. In the extended amygdala many new orexinergic targets were found in the anterior amygdaloid area (dense), anterior cortical nucleus (moderate), amygdalostriatal transition region (moderate), basolateral regions (moderate), basomedial nucleus (moderate), several bed nucleus of the stria terminals regions (few to dense), central amygdaloid subdivisions (dense), posteromedial cortical nucleus (moderate) and medial amygdaloid subnuclei (dense). Furthermore, the entopeduncular nucleus has been newly identified as another target for orexinergic fibers with a high density. These results suggest that subdivisions and subnuclei of the extended amygdala are specific targets of the orexinergic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

3:

Oculomotor nc.

3V:

Third ventricle

4:

Trochlear nc.

6:

Abducens nc.

7:

Facial nc.

10:

Dors. motor nc. vagus

12S:

Hypoglossal nc.

AAA:

Ant. amygdaloid area

AAD:

Ant. amygdaloid area dors. p.

AASh:

Ant. amygdaloid area shell area

AAV:

Ant. amygdaloid area vent. p.

ABC:

Avidin–biotin–horseradish peroxidase

Ac:

Accumbens nc.

AcbC:

Accumbens nc. core

AcbSh:

Accumbens nc. shell

ACo:

Ant. cortical amygdaloid nc.

AD:

Anterodors. thalamic nc.

AHAA:

Ant. hypothalamic area ant. p.

AHA:

Ant. hypothalamic area

AHi:

Amygdalohippocampal area

AHiAL:

Amygdalohippocampal area anterolateral p.

AHn:

Ant. hypothalamic nc.

AI:

Agranular insular cortex

Am:

Amygdala

AM:

Anteromed. thalamic nc.

Amb:

Ambiguus nc.

AON:

Ant. olfactory nc.

AP:

Area postrema

APT:

Ant. pretectal nc.

Arc:

Arcuate nc.

AStr:

Amygdalostriatal transition area

ATg:

Ant. tegmental nc.

AV:

Anterovent. thalamic nc.

AVPe:

Anterovent. periventricular nc.

B:

Bregma

B9:

B9 serotonin cells

BAC:

Bed nc. ant. commissure

Bar:

Barringtons nc.

BIC:

Nc. brachium inferior colliculus

Ll:

Lat. lemniscus

BLA:

Ant. basolat. nc.

BLP:

Posterior basolat. nc.

BLV:

Ventral basolat. nc.

BL:

Basolat. nc.

BMA:

Ant. basomed. nc.

BMP:

Posterior basomed. nc.

BM:

Basomed. nc.

BST:

Bed nc. stria terminalis

BSTAL:

BST ant. lat. area

BSTAM:

BST ant. med. p.

BSTIA:

BST intraamygdaloid div.

BSTLD:

BST lat. div. dors. p.

BSTLI:

BST lat. div. intermediate p.

BSTLJ:

BST lat. div. juxtacapsular p.

BSTLP:

BST lat. div. posterior p.

BSTLV:

BST lat. div. vent. p.

BSTL:

BST lat. div.

BSTMA:

BST med. div. ant. p.

BSTMPI:

BST med. div. posterointermediate p.

BSTMPL:

BST med. div. posterolat. p.

BSTMPM:

BST med. div. posteromed. p.

BSTMV:

BST med. div. vent. p.

BSTM:

BST med. div.

BSTP:

BST posterior div.

BSTV:

BST posterior div. vent. nc.

BSTd:

BST dors. nc.

BSTrL:

BST lat. div. rostral p.

BSTrm:

BST med. div. rostral p.

CA1:

Field CA1 hippocampus

CA2:

Field CA2 hippocampus

CA3:

Field CA3 hippocampus

CAn:

Cortical amygdaloid nc.

CCL1:

Cerebral cortex layer 1

CCL2:

Cerebral cortex layer 2

CCL3:

Cerebral cortex layer 3

CCL4:

Cerebral cortex layer 4

CCL5:

Cerebral cortex layer 5

CCL6:

Cerebral cortex layer 6

Ce:

Central amygdaloid nc.

CeC:

Capsular p.

CeL:

Central amygdaloid nc. lat. div.

CeM:

Central amygdaloid nc. med. div.

CERC:

Cerebellar cortex

Cg:

Cingulate cortex

CG:

Central gray

CIC:

Central nc. inferior colliculus

Cl:

Claustrum

CL:

Centrolat. thalamic nc.

CM:

Central med. thalamic nc.

CnF:

Cuneiforme nc.

COS:

Cochlear system

cp:

Cerebral peduncle

CPu:

Caudate putamen

cpv3:

choroid plexus 3rd ventricle

cpv4:

choroid plexus 4th ventricle

CVLM:

Caudal ventrolat. medulla

D3V:

Dorsal 3rd ventricle

DA:

Dors. hypothalamic area

DCIC:

Dors. cortex inferior colliculus

DC:

Dors. cochlear nc.

DEn:

Dors. endopiriform nc.

DG:

Dentate gyrus

Dk:

Nc. Darkschewitsch

DLGl:

Dors. geniculate nc. lat. p.

DM:

Dorsomed. hypothalamic nc.

DMDM:

Dorsomed. hypothalamic nc. dorsomed. p.

DNC:

Deep cerebellar nuclei

DPGi:

Dors. paragigantocellular nc.

DpMe:

Deep mesencephalic nc.

DPPn:

Dors. peduncular pontine nc.

DR:

Dors. raphe nc.

DRC:

Dors. raphe nc. caudal p.

DRcep:

Dors. raphe nc. central p.

DRI:

Dors. raphe nc. interfascicular p.

DRlw:

Dors. raphe nc. lat. wing

DRr:

Dors. raphe nc. rostral p.

DTg:

Dors. tegmental nc.

DTgC:

Dors. tegmental nc. central p.

E:

Ependyma and subependymal layer

ECIC:

External cortex inferior colliculus

EnN:

Endopiriform system

EP:

Entopeduncular nucleus

Ent:

Entorhinal cortex

f:

Fornix

F:

Nc. fields Forel

Fl:

Flocculus

FrA:

Frontal association cortex

FS:

Fundus striatum

G:

Gelatinosus thalamic nc.

Ge5:

Gelatinous layer caudal spinal trigeminal nc.

Gi:

Gigantocellular reticular nc.

GI:

Granular insular cortex

GiA:

Gigantocellular reticular nc. alpha p.

GiV:

Gigantocellular reticular nc. vent. p.

GN:

Geniculate nucleus

GP:

Globus pallidus

Gra:

Gracile nc.

GraD:

Gracile nc. dors. p.

HDB:

Nc. horizontal limb diagonal band

HIPP:

Hippocampus

I:

Intercalated nc. amygdala

IAM:

Interoanteromed. thalamic nc.

Ilc:

Internal capsule

ICj:

Islands Calleja

ICOL:

Inferior colliculus

IF:

Interfascicular nc.

IGL:

Intergeniculate leaf

IG:

Indusium griseum

ILN:

Intralaminar nuclei

IMD:

Intermediodors. thalamic nc.

IM:

Intercalated amygdaloid nc. main p.

InC:

Interstitial nc. Cajal

i.p.:

intra peritoneal

IP:

Interpeduncular nc.

IPA:

Interpeduncular nc. apical subnc.

IPDM:

Interpeduncular nc. dorsomed. subnc.

IPI:

Interpeduncular nc. intermediate subnc.

IPL:

Interpeduncular nc. lat. subnc.

IPR:

Interpeduncular nc. rostral subnc.

IPRc:

Interpeduncular nc. central subnc.

IRt:

Intermediate reticular nc.

KF:

Koelliker Fuse nc.

LA:

Lat. amygdaloid nc.

LAH:

Lateroant. hypothalamic nc.

LC:

Locus coeruleus

LD:

Laterodors. thalamic nc.

LDTg:

Laterodors. tegmental nc.

LG:

Lat. geniculate complex

LGP:

Lat. globus pallidus

LH:

Lat. hypothalamic area

LHb:

Lat. habenular nc.

LIR:

Linear nc. raphe

LM:

Lat. mammillary nc.

LOT:

Nc. lat. olfactory tract

LP:

Lat. posterior thalamic nc.

LPB:

Lat. parabrachial nc.

LPGi:

Lat. paragigantocellular nc.

LPN:

Lat. preoptic nc.

LPO:

Lat. preoptic area

LRt:

Lat. reticular nc.

LS:

Lat. septal nc.

LSD:

Lat. septal nc. dors. p.

LSI:

Lat. septal nc. intermediate p.

LSV:

Lat. septal nc. vent. p.

LV:

Lateral ventricle

MCPO:

Magnocellular preoptic nc.

MDC:

Mediodors. thalamic nc. central p.

MDL:

Mediodors. thalamic nc. lat. p.

MDM:

Mediodors. thalamic nc. med. p.

MD:

Mediodors. thalamic nc.

MdD:

Medullary reticular nc.

MdDd:

Medullary reticular nc. dors. p.

MdV:

Medullary reticular nc. vent. p.

MED:

Med. group dors. thalamus

Me:

Med. amygdaloid nc.

ME:

Median eminence

Me5:

Mesencephalic trigeminal nc.

MeAD:

Med. amygdaloid nc. anterodors. p.

MePD:

Med. amygdaloid nc. posterodors. p.

MePV:

Med. amygdaloid nc. posterovent. p.

MGP:

Med. globus pallidus

MG:

Med. geniculate nc.

MHb:

Med. habenular nc.

MM:

Med. mammillary nc. med. p.

MMn:

Med. mammillary nc.

MMnm:

Med. mammillary nc. median p.

MnPO:

Median preoptic nc.

MnR:

Median raphe nc.

Mo5:

Motor trigeminal nc.

MOB:

Olfactory bulb A16

MPA:

Med. preoptic area

MPB:

Med. parabrachial nc.

MPO:

Med. preoptic nc.

MPT:

Med. pretectal nc.

MRF:

Mesencephalic reticular formation

MS:

Med. septal nc.

mt:

Mammillothalamic tract

NADPHd:

Nicotinamide adenine dinucleotide hydrogen phosphate diaphorase

NGS:

Normal goat serum

NLL:

Nuclei lat. lemniscus

ON:

Olivary nc.

ONn:

Olfactory nuclei

opt:

Optic tract

OrC:

Orbital cortex

OT:

Nc. optic tract

OX:

Orexin, hypocretin

OX-A:

Orexin A (Hypocretin 1)

OX-B:

Orexin B (Hypocretin 2)

OX1R:

Orexin 1 receptor

OX2R:

Orexin 2 receptor

Pa:

Paraventricular nc.

PaAM:

Paraventricular hypothalamic nc. magnocellular p.

PAG:

Periaqueductal gray

PaPc:

Paraventricular hypothalamic nc. parvicellular p.

PB:

Parabrachial nc.

PBG:

Parabigeminal nc.

PBP:

Parabrachial pigmented nc.

PBS:

Phosphate buffered saline

PC:

Paracentral thalamic nc.

PCom:

Nc. posterior commissure

PCRt:

Parvicellular reticular nc.

PDP:

Posterodors. preoptic nc.

Pe:

Periventricular hypothalamic nc.

PeF:

Perifornical area

PeP:

Posterior periventricular nc.

PePO:

Preoptic periventricular nc.

Pir:

Piriform cortex

PF:

Parafascicular thalamic nc.

PFx:

Lat. hypothalamic area perifornical p.

PG:

Pontine gray

PHA:

Posterior hypothalamic area

PLCo:

Posterolat. cortical nc.

PLH:

Posterolat. hypothalamus

PMCo:

Posteromed. cortical nc.

PMn:

Paramedian reticular nc.

PN:

Paranigral nc.

PnO:

Pontine reticular nc. oral p.

PnR:

Pontine raphe nc.

Po:

Posterior thalamic nuclear group

PP:

Peripeduncular nc.

PPit:

Posterior lobe pituitary

PPN:

Peduncularpontine nc.

PPT:

Posterior pretectal nc.

PPTg:

Pedunculopontine tegmental nc.

Pr:

Prepositus nc.

Pr5:

Principal sensory trigeminal nc.

PRN:

Pontine reticular nc.

PS:

Parastriatal nc.

PSTh:

Parasubthalamic nucleus

PT:

Paratenial thalamic nc.

PtA:

Parietal association cortex

PV:

Paraventricular thalamic nc.

PVHd:

Paraventricular hypothalamic nc. descending div.

R:

Red nc.

RAN:

Raphe nuclei

RCh:

Retrochiasmatic area

Re:

Reuniens thalamic nc.

RETn:

Reticulotegmental nc.

Rh:

Rhomboid thalamic nc.

RhN:

Rhomboid nc.

RLi:

Rostral linear nc. raphe

RMg:

Raphe magnus nc.

Ro:

Nc. Roller

ROb:

Raphe obscurus nc.

RPa:

Raphe pallidus nc.

Rt:

Reticular thalamic nc.

RVLM:

Rostral ventrolat. medulla

S:

Subiculum

SC:

Superior colliculus

SCh:

Suprachiasmatic nc.

SCO:

Subcommissural organ

SFO:

Subfornical organ

SFi:

Septofimbrial nc.

SHi:

Septohippocampal nc.

SHy:

Septohypothalamic nc.

SI:

Substantia innominata

sm:

Stria medullaris thalamus

SMT:

Submammillothalamic nc.

SN:

Substantia nigra A9

SNC:

Substantia nigra compact p.

SNL:

Substantia nigra lat. p.

SNR:

Substantia nigra reticular p.

SO:

Supraoptic nc.

Sol:

Nc. solitary tract

sox:

Supraoptic decussation

Sp5C:

Spinal trigeminal nc. caudal p.

Sp5O:

Spinal trigeminal nc. oral p.

Sp5nc:

Spinal trigeminal nc.

SPF:

Subparafascicular thalamic nc.

STh:

Subthalamic nc.

STLD:

Equivalent to BSTLD

STLJ:

Equivalent to BSTLJ

STLP:

Equivalent to BSTLP

STLV:

Equivalent to BSTLV

STMA:

Equivalent to BSTMA

STMV:

Equivalent to BSTMV

SubI:

Subincertal nc.

SuM:

Supramammillar nc.

SuOLi:

Superior olive

TC:

Tuber cinereum area

TGAC:

Central tegmental field

TM:

Tuberomammillary nc.

TS:

Triangular septal nc.

TT:

Tenia tecta

TuLH:

Tuberal region lat. hypothalamus

TuO:

Olfactory tubercle

Tz:

Nc. trapezoid body

VC:

Ventral cochlear nc.

VDB:

Nc. vertical limb diagonal band

VES:

Vestibular system

VLG:

Ventral lat. geniculate nc.

VLPAG:

Ventrolat. periaqueductal gray

VL:

Ventrolat. thalamic nc.

VMHA:

Ventromed. hypothalamic nc. ant. p.

VMHP:

Ventromed. hypothalamic nc. posterior p

VMH:

Ventromed. hypothalamic nc.

VPPn:

Ventral peduncular pontine nc.

VP:

Ventral pallidum

VR:

Visual regions

VTA:

Ventral tegmental area A10

VTg:

Ventral tegmental nc.

Vnc:

Vestibular nuclei

ZI:

Zona incerta

ZID:

Zona incerta dors. p.

ZIV:

Zona incerta vent. p.

References

  • Balcita-Pedicino JJ, Sesack SR (2007) Orexin axons in the rat ventral tegmental area synapse infrequently onto dopamine and gamma-aminobutyric acid neurons. J Comp Neurol 503:668–684

    Article  PubMed  Google Scholar 

  • Baldo BA, Daniel RA, Berridge CW, Kelley AE (2003) Overlapping distributions of orexin/hypocretin- and dopamine-beta-hydroxylase immunoreactive fibers in rat brain regions mediating arousal, motivation, and stress. J Comp Neurol 464:220–237

    Article  PubMed  Google Scholar 

  • Bayer L, Eggermann E, Serafin M, Saint-Mleux B, Machard D, Jones B, Muhlethaler M (2001) Orexins (hypocretins) directly excite tuberomammillary neurons. Eur J Neurosci 14:1571–1575

    Article  PubMed  CAS  Google Scholar 

  • Bayer L, Eggermann E, Saint-Mleux B, Machard D, Jones BE, Mühlethaler M, Serafin M (2002) Selective action of orexin (hypocretin) on nonspecific thalamocortical projection neurons. J Neurosci 22:7835–7839

    PubMed  CAS  Google Scholar 

  • Bayer L, Serafin M, Eggermann E, Saint-Mleux B, Machard D, Jones BE, Muhlethaler M (2004) Exclusive postsynaptic action of hypocretin-orexin on sublayer 6b cortical neurons. J Neurosci 24:6760–6764

    Article  PubMed  CAS  Google Scholar 

  • Beckstead RM (1983) A pallidostriatal projection in the cat and monkey. Brain Res Bull 11:629–632

    Article  PubMed  CAS  Google Scholar 

  • Bisetti A, Cvetkovic V, Serafin M, Bayer L, Machard D, Jones BE, Muhlethaler M (2006) Excitatory action of hypocretin/orexin on neurons of the central medial amygdala. Neuroscience 142:999–1004

    Article  PubMed  CAS  Google Scholar 

  • Broberger C, De Lecea L, Sutcliffe JG, Hokfelt T (1998) Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J Comp Neurol 402:460–474

    Article  PubMed  CAS  Google Scholar 

  • Caillol M, Aioun J, Baly C, Persuy MA, Salesse R (2003) Localization of orexins and their receptors in the rat olfactory system: possible modulation of olfactory perception by a neuropeptide synthesized centrally or locally. Brain Res 960:48–61

    Article  PubMed  CAS  Google Scholar 

  • Chen CT, Dun SL, Kwok EH, Dun NJ, Chang JK (1999) Orexin A-like immunoreactivity in the rat brain. Neurosci Lett 260:161–164

    Article  PubMed  CAS  Google Scholar 

  • Ciriello J, Rosas-Arellano MP, Solano-Flores LP, de Oliveira CV (2003) Identification of neurons containing orexin-B (hypocretin-2) immunoreactivity in limbic structures. Brain Res 967:123–131

    Article  PubMed  CAS  Google Scholar 

  • Conde F, Maire-Lepoivre E, Audinat E, Crepel F (1995) Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents. J Comp Neurol 352:567–593

    Article  PubMed  CAS  Google Scholar 

  • Cutler DJ, Morris R, Sheridhar V, Wattam TA, Holmes S, Patel S, Arch JR, Wilson S, Buckingham RE, Evans ML, Leslie RA, Williams G (1999) Differential distribution of orexin-A and orexin-B immunoreactivity in the rat brain and spinal cord. Peptides 20:1455–1470

    Article  PubMed  CAS  Google Scholar 

  • Date Y, Ueta Y, Yamashita H, Yamaguchi H, Matsukura S, Kangawa K, Sakurai T, Yanagisawa M, Nakazato M (1999) Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci USA 96:748–753

    Article  PubMed  CAS  Google Scholar 

  • Date Y, Mondal MS, Matsukura S, Ueta Y, Yamashita H, Kaiya H, Kangawa K, Nakazato M (2000) Distribution of orexin/hypocretin in the rat median eminence and pituitary. Brain Res Mol Brain Res 76:1–6

    Article  PubMed  CAS  Google Scholar 

  • de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95:322–327

    Article  PubMed  Google Scholar 

  • de Olmos JS, Beltramino CA, Alheid G (2004) Amygdala and extended amygdala of the rat: a cytoarchitectonical, fibroarchitectonical, and chemoarchitectonical survey. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier, San Diego, pp 509–603

  • Dong HW, Petrovich GD, Swanson LW (2001) Topography of projections from amygdala to bed nuclei of the stria terminalis. Brain Res Brain Res Rev 38:192–246

    Article  PubMed  CAS  Google Scholar 

  • Duva MA, Tomkins EM, Moranda LM, Kaplan R, Sukhaseum A, Stanley BG (2005) Origins of lateral hypothalamic afferents associated with N-methyl-d-aspartic acid-elicited eating studied using reverse microdialysis of NMDA and Fluorogold. Neurosci Res 52:95–106

    Article  PubMed  CAS  Google Scholar 

  • Elias CF, Saper CB, Maratos-Flier E, Tritos NA, Lee C, Kelly J, Tatro JB, Hoffman GE, Ollmann MM, Barsh GS, Sakurai T, Yanagisawa M, Elmquist JK (1998) Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J Comp Neurol 402:442–459

    Article  PubMed  CAS  Google Scholar 

  • España RA, Reis KM, Valentino RJ, Berridge CW (2005) Organization of hypocretin/orexin efferents to locus coeruleus and basal forebrain arousal-related structures. J Comp Neurol 481:160–178

    Article  PubMed  Google Scholar 

  • Fadel J, Deutch AY (2002) Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience 111:379–387

    Article  PubMed  CAS  Google Scholar 

  • Fadel J, Pasumarthi R, Reznikov LR (2005) Stimulation of cortical acetylcholine release by orexin A. Neuroscience 130:541–547

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Witter MP (2004) Thalamus. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier, San Diego, pp 407–453

  • Guan JL, Wang QP, Shioda S (2003) Immunoelectron microscopic examination of orexin-like immunoreactive fibers in the dorsal horn of the rat spinal cord. Brain Res 987:86–92

    Article  PubMed  CAS  Google Scholar 

  • Hedreen JC, DeLong MR (1991) Organization of striatopallidal, striatonigral, and nigrostriatal projections in the macaque. J Comp Neurol 304:569–595

    Article  PubMed  CAS  Google Scholar 

  • Henny P, Jones BE (2006) Innervation of orexin/hypocretin neurons by GABAergic, glutamatergic or cholinergic basal forebrain terminals evidenced by immunostaining for presynaptic vesicular transporter and postsynaptic scaffolding proteins. J Comp Neurol 499:645–661

    Article  PubMed  CAS  Google Scholar 

  • Hirota K, Kushikata T, Kudo M, Kudo T, Lambert D, Matsuki A (2001) Orexin A and B evoke noradrenaline release from rat cerebrocortical slices. Br J Pharmacol 134:1461–1466

    Article  PubMed  CAS  Google Scholar 

  • Hoover WB, Vertes RP (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212:149–179

    Article  PubMed  Google Scholar 

  • Horowitz SS, Blanchard J, Morin LP (2005) Medial vestibular connections with the hypocretin (orexin) system. J Comp Neurol 487:127–146

    Article  PubMed  Google Scholar 

  • Horvath TL, Peyron C, Diano S, Ivanov A, Aston-Jones G, Kilduff TS, van Den Pol AN (1999) Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J Comp Neurol 415:145–159

    Article  PubMed  CAS  Google Scholar 

  • Hsu DT, Price JL (2009) Paraventricular thalamic nucleus: subcortical connections and innervation by serotonin, orexin, and corticotropin-releasing hormone in macaque monkeys. J Comp Neurol 512:825–848

    Article  PubMed  Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) The use of antiavidin antibody and avidin-biotin-peroxidase complex in immunoperoxidase technics. Am J Clin Pathol 75:816–821

    Google Scholar 

  • Iqbal J, Pompolo S, Sakurai T, Clarke IJ (2001) Evidence that orexin-containing neurones provide direct input to gonadotropin-releasing hormone neurones in the ovine hypothalamus. J Neuroendocrinol 13:1033–1041

    Article  PubMed  CAS  Google Scholar 

  • Jasmin L, Burkey AR, Granato A, Ohara PT (2004) Rostral agranular insular cortex and pain areas of the central nervous system: a tract-tracing study in the rat. J Comp Neurol 468:425–440

    Article  PubMed  Google Scholar 

  • Khorooshi RM, Klingenspor M (2005) Neuronal distribution of melanin-concentrating hormone, cocaine- and amphetamine-regulated transcript and orexin B in the brain of the Djungarian hamster (Phodopus sungorus). J Chem Neuroanat 29:137–148

    Article  PubMed  CAS  Google Scholar 

  • Kirouac GJ, Parsons MP, Li S (2005) Orexin (hypocretin) innervation of the paraventricular nucleus of the thalamus. Brain Res 1059:179–188

    Article  PubMed  CAS  Google Scholar 

  • Kita H, Kitai ST (1987) Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J Comp Neurol 260:435–452

    Article  PubMed  CAS  Google Scholar 

  • Korotkova TM, Eriksson KS, Haas HL, Brown RE (2002) Selective excitation of GABAergic neurons in the substantia nigra of the rat by orexin/hypocretin in vitro. Regul Pept 104:83–89

    Article  PubMed  CAS  Google Scholar 

  • Langmead CJ, Jerman JC, Brough SJ, Scott C, Porter RA, Herdon HJ (2004) Characterisation of the binding of [3H]-SB-674042, a novel nonpeptide antagonist, to the human orexin-1 receptor. Br J Pharmacol 141:340–346

    Article  PubMed  CAS  Google Scholar 

  • Lee HS, Park SH, Song WC, Waterhouse BD (2005) Retrograde study of hypocretin-1 (orexin-A) projections to subdivisions of the dorsal raphe nucleus in the rat. Brain Res 1059:35–45

    Article  PubMed  CAS  Google Scholar 

  • Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, Elmquist JK (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435:6–25

    Article  PubMed  CAS  Google Scholar 

  • Martin G, Fabre V, Siggins GR, de Lecea L (2002) Interaction of the hypocretins with neurotransmitters in the nucleus accumbens. Regul Pept 104:111–117

    Article  PubMed  CAS  Google Scholar 

  • McGranaghan PA, Piggins HD (2001) Orexin A-like immunoreactivity in the hypothalamus and thalamus of the Syrian hamster (Mesocricetus auratus) and Siberian hamster (Phodopus sungorus), with special reference to circadian structures. Brain Res 904:234–244

    Article  PubMed  CAS  Google Scholar 

  • Millhouse OE, Uemura-Sumi M (1985) The structure of the nucleus of the lateral olfactory tract. J Comp Neurol 233:517–552

    Article  PubMed  CAS  Google Scholar 

  • Mintz EM, van den Pol AN, Casano AA, Albers HE (2001) Distribution of hypocretin-(orexin) immunoreactivity in the central nervous system of Syrian hamsters (Mesocricetus auratus). J Chem Neuroanat 21:225–238

    Article  PubMed  CAS  Google Scholar 

  • Modirrousta M, Mainville L, Jones BE (2005) Orexin and MCH neurons express c-Fos differently after sleep deprivation vs. recovery and bear different adrenergic receptors. Eur J Neurosci 21:2807–2816

    Article  PubMed  Google Scholar 

  • Moore RY, Abrahamson EA, Van Den Pol A (2001) The hypocretin neuron system: an arousal system in the human brain. Arch Ital Biol 139:195–205

    PubMed  CAS  Google Scholar 

  • Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M, Goto K (1999) Distribution of orexin neurons in the adult rat brain. Brain Res 827:243–260

    Article  PubMed  CAS  Google Scholar 

  • Novak CM, Albers HE (2002) Localization of hypocretin-like immunoreactivity in the brain of the diurnal rodent, Arvicanthis niloticus. J Chem Neuroanat 23:49–58

    Article  PubMed  CAS  Google Scholar 

  • Oldfield BJ, Allen AM, Davern P, Giles ME, Owens NC (2007) Lateral hypothalamic ‘command neurons’ with axonal projections to regions involved in both feeding and thermogenesis. Eur J Neurosci 25:2404–2412

    Article  PubMed  CAS  Google Scholar 

  • Onat FY, Aker R, Sehirli U, San T, Cavdar S (2002) Connections of the dorsomedial hypothalamic nucleus from the forebrain structures in the rat. Cell Tissue Organ 172:48–52

    Article  Google Scholar 

  • Park MR, Falls WM, Kitai ST (1982) An intracellular HRP study of the rat globus pallidus. I. Responses and light microscopic analysis. J Comp Neurol 211:284–294

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (2007) Rat brain in stereotaxic coordinates, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  • Paxinos G, Kus L, Ashwell KWyS, Watson C (1999) Chemoarchitectonic atlas of the rat forebrain. Academic Press, San Diego

    Google Scholar 

  • Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015

    PubMed  CAS  Google Scholar 

  • Sadowski M, Morys J, Jakubowska-Sadowska K, Narkiewicz O (1997) Rat’s claustrum shows two main cortico-related zones. Brain Res 756:147–152

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto F, Yamada S, Ueta Y (2004) Centrally administered orexin-A activates corticotropin-releasing factor-containing neurons in the hypothalamic paraventricular nucleus and central amygdaloid nucleus of rats: possible involvement of central orexins on stress-activated central CRF neurons. Regul Pept 118:183–191

    Article  PubMed  CAS  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    Article  PubMed  CAS  Google Scholar 

  • Sakurai T, Nagata R, Yamanaka A, Kawamura H, Tsujino N, Muraki Y, Kageyama H, Kunita S, Takahashi S, Goto K, Koyama Y, Shioda S, Yanagisawa M (2005) Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron 46:297–308

    Article  PubMed  CAS  Google Scholar 

  • Santiago AC, Shammah-Lagnado SJ (2005) Afferent connections of the amygdalopiriform transition area in the rat. J Comp Neurol 489:349–371

    Article  PubMed  Google Scholar 

  • Schmitt O, Eipert P, Wree A, Schmitz K-P (2011) Spike distributions of a population based hierarchical network of the rat amygdaloid complex. BMC Neurosci 12(Suppl 1):P285

    Google Scholar 

  • Selbach O, Haas HL (2006) Hypocretins: the timing of sleep and waking. Chronobiol Int 23:63–70

    Article  PubMed  CAS  Google Scholar 

  • Shibata M, Mondal MS, Date Y, Nakazato M, Suzuki H, Ueta Y (2008) Distribution of orexins-containing fibers and contents of orexins in the rat olfactory bulb. Neurosci Res 61:99–105

    Article  PubMed  CAS  Google Scholar 

  • Shin JW, Geerling JC, Loewy AD (2008) Inputs to the ventrolateral bed nucleus of the stria terminalis. J Comp Neurol 511:628–657

    Article  PubMed  Google Scholar 

  • Sloniewski P, Usunoff KG, Pilgrim C (1986) Retrograde transport of fluorescent tracers reveals extensive ipsi- and contralateral claustrocortical connections in the rat. J Comp Neurol 246:467–477

    Article  PubMed  CAS  Google Scholar 

  • Steininger TL, Kilduff TS (2005) Anatomy of the hypocretin system. In: Lecea LD, Sutcliffe JG (eds) Hypocretins: integrators of physiological signals. Springer, New York

    Google Scholar 

  • Steininger TL, Kilduff TS, Behan M, Benca RM, Landry CF (2004) Comparison of hypocretin/orexin and melanin-concentrating hormone neurons and axonal projections in the embryonic and postnatal rat brain. J Chem Neuroanat 27:165–181

    Article  PubMed  CAS  Google Scholar 

  • Stoyanova II, Lazarov NE (2005) Localization of orexin-A-immunoreactive fibers in the mesencephalic trigeminal nucleus of the rat. Brain Res 1054:82–87

    Article  PubMed  CAS  Google Scholar 

  • Su J, Lei Z, Zhang W, Ning H, Ping J (2008) Distribution of orexin B and its relationship with GnRH in the pig hypothalamus. Res Vet Sci 85:315–323

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW (1999) Brain maps: structure of the rat brain. Elsevier, Amsterdam

    Google Scholar 

  • Takakusaki K, Takahashi K, Saitoh K, Harada H, Okumura T, Kayama Y, Koyama Y (2005) Orexinergic projections to the cat midbrain mediate alternation of emotional behavioural states from locomotion to cataplexy. J Physiol 568:1003–1020

    Article  PubMed  CAS  Google Scholar 

  • van den Pol AN (1999) Hypothalamic hypocretin (orexin): robust innervation of the spinal cord. J Neurosci 19:3171–3182

    PubMed  Google Scholar 

  • Winsky-Sommerer R, Yamanaka A, Diano S, Borok E, Roberts AJ, Sakurai T, Kilduff TS, Horvath TL, de Lecea L (2004) Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J Neurosci 24:11439–11448

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, McCormack S, España RA, Crocker A, Scammell TE (2006) Afferents to the orexin neurons of the rat brain. J Comp Neurol 494:845–861

    Article  PubMed  Google Scholar 

  • Zheng H, Patterson LM, Berthoud HR (2005) Orexin-A projections to the caudal medulla and orexin-induced c-Fos expression, food intake, and autonomic function. J Comp Neurol 485:127–142

    Google Scholar 

Download references

Acknowledgments

This article is dedicated to the memory of our friend and colleague, Prof. Dr. Kamen Usunoff, who sadly passed away on February 28, 2009. He was an outstanding personality with an enormous experience in neuroanatomy and the whole field of neuroscience. Kamen has provided substantial work to this study. We thank Frauke Winzer for expert technical assistance and Alexander Hawlitschka for sharing his knowledge on immunohistochemical methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Schmitt.

Additional information

Abbreviations used within the abbreviation list: ant.: anterior, div.: division, dors: dorsal lat.: lateral, med.: medial, p.: part, post.: posterior, nc.: nucleus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt, O., Usunoff, K.G., Lazarov, N.E. et al. Orexinergic innervation of the extended amygdala and basal ganglia in the rat. Brain Struct Funct 217, 233–256 (2012). https://doi.org/10.1007/s00429-011-0343-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-011-0343-8

Keywords

Navigation