Skip to main content
Log in

Mechanisms of recognition of the outlines of “vanishing” optotypes

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The aim of the present work was to study the interaction between the optical properties of images of “ disappearing” optotypes and their recognition thresholds. The “disappearing” optotypes were figures with complex outlines and had a unique property-they were close to the threshold of recognition and observation, which increases the accuracy of measurement of visual acuity and the subjects’ attention to them. The recognition distances of “disappearing” optotypes were measured. A relationship was found between the recognition distance of “disappearing” optotypes and different optical density profiles on the one hand and the spatial and spatial frequency characteristics of the stimuli on the other. The decisive factor determining the threshold of recognition of optotypes in spatial frequency terms is its spatial frequency spectrum; that in spatial terms is the width of the black/white pair or black-white triad in the complex outline. Regardless of the shape of the optotype, one of the most important limiting factors was the concordance of this test with the scattering function of the subject’s eye optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. V. Bardin, Questions of the Threshold of Sensitivity and Psychophysical Methods [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  2. V. V. Volkov, Yu. E. Shelepin, V. B. Makulov, L. N. Kolesnikova, and V. N. Pauk, “New letter-based tests for measurement of visual acuity,” Oftal’mol. Zh., 5, 294–296 (1987).

    Google Scholar 

  3. V. V. Volkov, Yu. E. Shelepin, V. B. Makulov, L. N. Kolesnikova, and V. N. Pauk, Methods for Visual Contrast Perimetry: Methodological Recommendations and Atlas [in Russian], Moscow (1988), p. 14.

  4. S. S. Golovin, Clinical Ophthalmology [in Russian], State Press, Moscow, Leningrad (1923).

    Google Scholar 

  5. S. S. Golovin, Russian Isognostic Tables for Studies of Visual Acuity [in Russian], State Press, Moscow, Leningrad (1925).

    Google Scholar 

  6. S. S. Golovin and D. A. Sivtsev, Tables for Measurement of Visual Acuity [in Russian], State Press, Moscow, Leningrad (1926).

    Google Scholar 

  7. F. W. Cabell and Yu. E. Shelepin, “The ability of the foveola in object discrimination,” Sensor. Sistemy, 4, No. 2, 181–185 (1990).

    Google Scholar 

  8. S. A. Koskin, Yu. E. Shelepin, V. B. Makulov, V. N. Pauk, and N. N. Pavlov, “Conditions for the discrimination of optotypes with defined spatial frequency characteristics,” Sensor. Sistemy, 4, No. 1, 79–83 (1990).

    Google Scholar 

  9. S. A. Koskin, V. V. Khlebnikov, and Yu. E. Shelepin, “Measurement of visual acuity in clinical practice,” Oftal’mokhirurgiya i Terapiya, 2, No. 3, 40–43 (2002).

    Google Scholar 

  10. N. N. Krasil’nikov, Transfer Theory and the Perception of Images [in Russian], Radio i Svyaz’, Moscow (1986).

    Google Scholar 

  11. N. N. Krasil’nikov, Digital Image Processing [in Russian], Vuzovskaya Shkola, Moscow (2001).

    Google Scholar 

  12. M. M. Miroshnikov and V. F. Nesteruk, Iconics. Current State and Directions for Future Development. The Optical-Mechanical Industry [in Russian], Vol. 12, pp. 15–17 (1988).

    Google Scholar 

  13. N. F. Podvigin, Dynamic Properties of Neuronal Structures of the Visual System [in Russian], Nauka, Leningrad (1979).

    Google Scholar 

  14. A. Kholina, “A new table for studies of visual acuity,” Russ. Oftal. Zh., 10, No. 2, 42047 (1930).

  15. K. I. Tsikulenko, “The question of the minimum cognoscible,” Russ. Oftal. Zh., 9, No. 2, 143–145 (1929).

    Google Scholar 

  16. K. I. Tsikulenko “The perception of a point,” Russ. Oftal. Zh., 5, No. 1, 151–156 (1926).

    Google Scholar 

  17. K. I. Tsikulenko “Modification of Landolt’s ring in relation to the effects of irradiation on them, ” Russ. Oftal. Zh., 6, No. 11, 1042–1045 (1927).

    Google Scholar 

  18. I. I. Tsukkerman, “The concordance between the spatial frequency filters of the visual analyzer and image statistics,” Biofizika, 23, No. 6, 1108–1109 (1978).

    PubMed  CAS  Google Scholar 

  19. Yu. E. Shelepin and V. M. Bondarko, “The resolving ability and image discretization in the visual system,” Ros. Fiziol. Zh. im. I. M. Sechenova, 88, No. 9, 1116–1132 (2002).

    Google Scholar 

  20. Yu. E. Shelepin, V. D. Glezer, V. M. Bondarko, and M. V. Pavlovskaya, Spatial Vision. Visual Physiology. (Handbook of Physiology), [in Russian], A. L. Byzov (ed.), Nauka, Moscow (1992), pp. 528–585.

    Google Scholar 

  21. Yu. E. Shelepin, L. N. Kolesnikova, and Yu. I. Levkovich, Visual Contrastometry. (Measurement of Modulatory Transfer Functions of the Visual System) [in Russian], Nauka, Leningrad (1985).

    Google Scholar 

  22. Yu. E. Shelepin, V. V. Volkov, S. A. Koskin, V. B. Makulov, L. N. Kolesnikova, N. M. Kornyushina, and V. N. Pauk, A Means for Studying Visual Acuity and a Test Map for This Purpose [in Russian], A. s. USSR No. 1540798. Priority from 27.4.87. Published 7.2.90, BI No. 5.

  23. Yu. E. Shelepin, V. B. Makulov, L. N. Kolesnikova, V. N. Pauk, N. M. Kornyushina, and Yu. A. Kirillov, A Method for Measuring Visual Acuity and a Test Map for This Purpose [in Russian], A. s. USSR No. 1542545. Priority from 21.4.87. Published 15.2.90, BI No. 6.

  24. Yu. E. Shelepin, N. N. Krasil’nikov, S. V. Pronin, V. B. Makulov, V. N. Chikhman, V. F. Danilichev, and S. A. Koskin, “Iconics and a method for evaluating the functional abilities of the visual system,” Sensor. Sistemy, 12, No. 3, 319–328 (1998).

    Google Scholar 

  25. T. O. Adoh and J. M. Woodhouse, “The Cardiff acuity test used for measuring visual acuity development in toddlers,” Vision Res., 34, No. 4, 555–560 (1994).

    Article  PubMed  CAS  Google Scholar 

  26. F. W. Campbell and Yu. E. Shelepin, “The mechanics of the foveola and its role in defining an object,” Perception, 18, No. 4, 532 (A50) (1989).

    Google Scholar 

  27. F. W. Campbell, Yu. E. Shelepin, N. N. Pavlov, and T. W. Tegeder, “Psychophysical measurements of the intercone separation and object recognition in the human foveola,” Ophthalm. Physiol. Opt., 12, No. 1, 101–102 (1992).

    Article  Google Scholar 

  28. L. Frisen, “Vanishing optotypes. New type of acuity test letters,” Arch. Ophthalmol., 104, No. 8, 1194–1198 (1986).

    PubMed  CAS  Google Scholar 

  29. S. A. Koskin, V. F. Danilichev, and Yu. E. Shelepin, “A comparative study of the spatial-frequency spectrum of different letter optotypes and its role in target recognition,” Perception, 26, Supplement, 54 (1997).

    Google Scholar 

  30. S. A. Koskin, Yu. E. Shelepin, and V. B. Makulov, “Recognition of filtered optotypes with narrow-band spatial-frequency spectrum,” Perception, 27,Supplement, 162 (1998).

    Google Scholar 

  31. R. T. Mackie, K. J. Saunders, R. E. Day, G. N. Dutton, and D. L. McCulloch, “Visual acuity assessment of children with neurological impairment using grating and vanishing optotype acuity cards,” Acta Ophthalmol. Scand., 74, No. 5, 483–487 (1996).

    Article  PubMed  CAS  Google Scholar 

  32. V. B. Makulov and V. N. Pauk, “Software for Image processing on personal computers,” Optical Engineering, 31, No. 4, 782–788 (1992).

    Article  Google Scholar 

  33. A. Medina and B. Howland, “A novel high-frequency visual acuity chart,” Ophthal. Physiol. Opt., 8, No. 1, 14–18 (1988).

    Article  CAS  Google Scholar 

  34. M. L. Simas and S. L. Silva, “Vanishing optotypes: is single presentation superior to chart exposure,” Braz. J. Med. Biol. Res., 24, No. 2, 145–148 (1991).

    PubMed  CAS  Google Scholar 

  35. A. B. Watson, H. B. Harlow, and J. G. Robson, “What does the eye see best?” Nature, 302, No. 5907, 419–422 (1983).

    Article  PubMed  CAS  Google Scholar 

  36. H. R. Wilson and D. J. Gelb, “Modified line element theory for spatial frequency and width discrimination,” J. Opt. Soc. Amer., A1, 124–131 (1984).

    Article  Google Scholar 

  37. H. R. Wilson, D. K. MacFarlane, and G. C. Phillips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res., 23, 873–882 (1983).

    Article  PubMed  CAS  Google Scholar 

  38. “Recommended standard procedures for the clinical measurement and specification of visual acuity. Report of working group 39. Committee on Vision. Assembly of Behavioral and Social Sciences, National Research Council, National Academy of Sciences, Washington D.C.,” Adv. Ophthalmol., 41, 103–148 (1980).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 91, No. 9, pp. 1080–1090, September, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koskin, S.A., Boiko, É.V., Sobolev, A.F. et al. Mechanisms of recognition of the outlines of “vanishing” optotypes. Neurosci Behav Physiol 37, 59–65 (2007). https://doi.org/10.1007/s11055-007-0150-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-007-0150-0

Key words

Navigation