Skip to main content

Advertisement

Log in

Anthropogenic Aquifer Recharge Effect on Groundwater Resources in an Agricultural Floodplain in Northeastern Tunisia: Insights from Geochemical Tracers and Geophysical Methods

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

In this study, geochemical tracers and geophysical methods were combined to assess the anthropogenic aquifer recharge (AAR) processes within a small floodplain in Mornag plain, NE of Tunisia. From a regional viewpoint, the aquifer is one of the most exploited because of the intensive agricultural and industrial activities in the region. Based on geochemical data and hydrodynamic observations, stream–aquifer connection was evidently proven. An AAR from the saline effluent rejected in the dry channel (the Wadi) was detected in the downstream area of the Wadi El Hma plain. Isotopic tracers (18O and 2H) were effective tools to clarify the recharge processes in relation to the hill dam to detect the signature of the effluent near an installed check dam. Electrical resistivity tomography (ERT) profiles were performed in the most salinized part of the plain in order to highlight the role of the Wadi in AAR. ERT provided clear images of low resistivity horizons longitudinally and transversely to the Wadi. Because groundwater is mainly used for irrigation in the Wadi El Hma plain, an assessment of its suitability for irrigation was performed based on a multi-criteria decision analysis, which revealed that, except the hill dam water and upstream groundwater, the remaining zones of the aquifer are providing water classified as doubtful to unsuitable for irrigation. The results of this work highlight the water sustainability threat in the region and would warn decision-makers to control the Wadi runoff and preserve it against any pollution source since it constitutes the principal inlet of any AAR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Ali, B. H., M., Jedoui, Y., Dali, T., Ben Salem, H., & Memmi, L. (1985). Geological map of Tunisia at the scale 1/500 000, ed. Serv. Géol., Tunisia.

  • Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture (Vol. 29). Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Baharuddin, M. F. T., Taib, S., Hashim, R., Abidin, M. H. Z., & Rahman, N. I. (2013). Assessment of seawater intrusion to the agricultural sustainability at the coastal area of Carey Island, Selangor, Malaysia. Arabian Journal of Geosciences, 6(10), 3909–3928.

    Article  Google Scholar 

  • Balleau, W. P. (2013). The policy of “pumping the recharge” is out of control. Eos, Transactions American Geophysical Union, 94(1), 4–4.

    Article  Google Scholar 

  • Bauder, T. A., Waskom, R. M., Sutherland, P. L., & Davis, J. G. (2011). Irrigation water quality criteria. Fact sheet (Colorado State University. Extension). Crop series; no. 0.506.

  • Bauer, P., Supper, R., Zimmermann, S., & Kinzelbach, W. (2006). Geoelectrical imaging of groundwater salinization in the Okavango Delta, Botswana. Journal of Applied Geophysics, 60(2), 126–141.

    Article  Google Scholar 

  • Ben Farhat, B. (2011). Caractérisation de la géométrie des aquifères Mio-Plio-Quaternaires de la plaine de Mornag (NE Tunisie) par les méthodes géophysiques. Hydrochimie et modélisation de la recharge potentielle. Doctoral Thesis, Faculty of Sciences of Tunis, University of Tunis El Manar. 224p.

  • Boutib, L. (1998). Tectonique de la région du grand Tunis: évolution géométrique et cinématique des blocs structuraux du Mésozoique à l’Actuel (Atlas nord oriental de Tunisie). Doctoral dissertation, Faculty of Sciences of Tunis, University of Tunis El Manar, 151 p.

  • Bouwer, H., & Idelovitch, E. (1987). Quality requirements for irrigation with sewage water. Journal of Irrigation and Drainage Engineering, 113(4), 516–535.

    Article  Google Scholar 

  • Brown, D. G., Johnson, K. M., Loveland, T. R., & Theobald, D. M. (2005). Rural land-use trends in the conterminous United States, 1950–2000. Ecological Applications, 15(6), 1851–1863.

    Article  Google Scholar 

  • Bujalka, P., Rakus, M. & Vacek, J. (1972). Geological map of Tunisia, La Goulette in 1/50 000 scale. Geological services of Tunisia, publ National Office of Mines, Tunisia.

  • Chabaane, A., Redhaounia, B., & Gabtni, H. (2017). Combined application of vertical electrical sounding and 2D electrical resistivity imaging for geothermal groundwater characterization: Hammam Sayala hot spring case study (NW Tunisia). Journal of African Earth Sciences, 134, 292–298.

    Article  Google Scholar 

  • Chabaane, A., Redhaounia, B., Gabtni, H., & Amiri, A. (2018). Contribution of geophysics to geometric characterization of freshwater–saltwater interface in the Maâmoura region (NE Tunisia). Euro-Mediterranean Journal for Environmental Integration, 3(1), 1–8. https://doi.org/10.1007/s41207-018-0068-7

    Article  Google Scholar 

  • Charef, A., Ayed, L., & Azzouzi, R. (2012). Impact of natural and human processes on the hydrochemical evolution of overexploited coastal groundwater: Case study of the Mornag aquifer refill (South-East Tunis, Tunisia). Geochemistry, 72(1), 61–69.

    Article  Google Scholar 

  • Chekirbane, A., Tsujimura, M., Kawachi, A., Isoda, H., Tarhouni, J., & Benalaya, A. (2013). Hydrogeochemistry and groundwater salinization in an ephemeral coastal flood plain: Cap Bon Tunisia. Hydrological Sciences Journal, 58(5), 1097–1110.

    Article  Google Scholar 

  • Clark, I. D., & Fritz, P. (1997). Environmental isotopes in hydrogeology. CRC Press.

    Google Scholar 

  • Closas, A., Imache, A., & Mekki, I. (2018). Groundwater governance in Tunisia. A Policy White Paper (No. 615–2018–4009).

  • Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133(3465), 1702–1703.

    Article  Google Scholar 

  • Custodio, E. (2002). Aquifer overexploitation: What does it mean? Hydrogeology Journal, 10(2), 254–277.

    Article  Google Scholar 

  • Doetsch, J., Linde, N., Vogt, T., Binley, A., & Green, A. G. (2012). Imaging and quantifying salt-tracer transport in a riparian groundwater system by means of 3D ERT monitoring. Geophysics, 77(5), B207–B218.

    Article  Google Scholar 

  • Döll, P., & Flörke, M. (2005). Global scale estimation of diffuse groundwater recharge. Frankfurt Hydrology Paper 03. Institute of Physical Geography, Frankfurt University.

  • Doneen, L. D. (1964). Notes on water quality in agriculture. University of California, Davis.

    Google Scholar 

  • Dregne, H. E. (1991). Global status of desertification. Annals of Arid Zones, 30(3), 179–185.

    Google Scholar 

  • Eaton, E. M. (1950). Significance of Carbonate in Irrigation Water. Soil Science, 69, 123–133.

    Article  Google Scholar 

  • Ennabli, M. (1980). Etude hydrogéologique des aquifères du Nord-Est de la Tunisie pour une gestion intégrée des ressources en eau. Doctoral dissertation, University of Nice, France, 72p.

  • Farhat, B. (2011). Caractérisation de la géométrie des aquifères Mio-plio-quaternaires de la plaine de Mornag (en Tunisie) par les méthodes géophysiques. Hydrochimie et modélisation de la recharge potentielle. Doctoral dissertation. University of Tunis El Manar, 208 p.

  • Farhat, B., Mammou, A. B., Kouzana, L., Chenini, I., Podda, F., & De Giudici, G. (2010). Groundwater chemistry of the Mornag aquifer system in NE Tunisia. Resource Geology, 60(4), 377–388.

    Article  Google Scholar 

  • Follett, R. H., & Soltanpour, P. N. (1985). Irrigation water quality criteria. Service in action; no. 0.506.

  • Frija, A., Chebil, A., Speelman, S., & Faysse, N. (2014). A critical assessment of groundwater governance in Tunisia. Water Policy, 16(2), 358–373.

    Article  Google Scholar 

  • Gleeson, T., Wada, Y., Bierkens, M. F., & Van Beek, L. P. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature, 488(7410), 197–200.

    Article  Google Scholar 

  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812–818.

    Article  Google Scholar 

  • Healy, R. W., & Cook, P. G. (2002). Using groundwater levels to estimate recharge. Hydrogeology Journal, 10(1), 91–109.

    Article  Google Scholar 

  • Hechemi, H. (1989). Explicative note of the water resources map of Tunisia at the scale 1/200 000 [Carte des ressources en eau de la Tunisie au 1/200 000. Notice explicative]. Technical Report, DGRE, Tunis, 19p.

  • Hounslow, A. (2018). Water quality data: Analysis and interpretation. CRC Press.

    Book  Google Scholar 

  • INM, 2018. Climatic data of Ben Arous prefecture. Institut National de la Météorologie, Tunis, Tunisia [online]. Available from: http://www.meteo.tn/ [Accessed August 2018].

  • Jalali, M. (2007). Salinization of groundwater in arid and semi-arid zones: An example from Tajarak, western Iran. Environmental Geology, 52(6), 1133–1149.

    Article  Google Scholar 

  • Jarraya-Horriche, F. (2004). Contribution to the Analysis and the Rationalization of the Piezometric Network. Doctoral dissertation, University of Tunis El Manar Tunisia. 254p.

  • Jarraya-Horriche, F. & Wolfgang, B. (2019). Seawater intrusion modelling in the Mornag aquifer, Tunisia. Proceedings of the 2nd ATLAS Georesources International Congress (AGIC219): Applied Geosciences for Groundwater. March 2019, Hammamet, Tunisia.

  • Jauzein, A. (1967). Contribution à l’étude géologique de la Tunisie septentrionale: les confins de la dorsale tunisienne. Ann. Mines et Géol. 22, 475 p.

  • Kammoun, S., Trabelsi, R., Re, V., Zouari, K., & Henchiri, J. (2018). Groundwater quality assessment in semi-arid regions using integrated approaches: The case of Grombalia aquifer (NE Tunisia). Environmental Monitoring and Assessment, 190(2), 87.

    Article  Google Scholar 

  • Kemna, A., Vanderborght, J., Kulessa, B., & Vereecken, H. (2002). Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. Journal of Hydrology, 267(3–4), 125–146.

    Article  Google Scholar 

  • Lachaal, F., Chekirbane, A., Mlayah, A., Hjiri, B., & Tarhouni, J. (2014). A multi-tracer approach to understand the hydrogeochemical functioning of a coastal aquifer located in NE Tunisia. IAHS Publication, 363, 191–196.

    Google Scholar 

  • Leitão, T. E., Mota, R., Novo, M. E., & Lobo-Ferreira, J. P. (2014). Combined use of electrical resistivity tomography and hydrochemical data to assess anthropogenic impacts on water quality of a karstic region: A case study from Querença-Silves, South Portugal. Environmental Processes, 1(1), 43–57.

    Article  Google Scholar 

  • Li, Z., Yang, Q., Yang, Y., Ma, H., Wang, H., Luo, J., Bian, J., & Martin, J. D. (2019). Isotopic and geochemical interpretation of groundwater under the influences of anthropogenic activities. Journal of Hydrology, 576, 685–697.

    Article  Google Scholar 

  • Loke, M. H. (2011). Electrical resistivity surveys and data interpretation. In H. K. Gupta (Ed.), Encyclopedia of solid earth geophysics (2nd ed., pp. 276–283). Cham: Springer.

    Chapter  Google Scholar 

  • Loke, M. H., & Barker, R. D. (1996). Practical techniques for 3D resistivity surveys and data inversion1. Geophysical Prospecting, 44(3), 499–523.

    Article  Google Scholar 

  • Loke, M. H., & Dahlin, T. (2002). A comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging inversion. Journal of Applied Geophysics, 49(3), 149–162.

    Article  Google Scholar 

  • Malczewski, J. (1999). GIS and multicriteria decision analysis. Wiley.

    Google Scholar 

  • Maliva, R. G. (2020). Anthropogenic Aquifer Recharge. WSP Methods in Water Resources Evaluation Series No 5. Springer, Cham p. 861.

  • Mamou, A. (1994). Impact of the artificial recharge on the groundwater flow system of Mornag using canal Medjerda Cap Bon water [Impact de la recharge artificielle par les eaux du canal Mejerda Cap Bon sur le système aquifère de Mornag]. Technical Report, DGRE, Tunis, 39p.

  • Mays, L. W. (2013). Groundwater resources sustainability: Past, present, and future. Water Resources Management, 27(13), 4409–4424.

    Article  Google Scholar 

  • McInnis, D., Silliman, S., Boukari, M., Yalo, N., Orou-Pete, S., Fertenbaugh, C., Sarre, K., & Fayomi, H. (2013). Combined application of electrical resistivity and shallow groundwater sampling to assess salinity in a shallow coastal aquifer in Benin, West Africa. Journal of Hydrology, 505, 335–345.

    Article  Google Scholar 

  • McLean, W., Jankowski, J., & Lavitt, N. (2000). Groundwater quality and sustainability in an alluvial aquifer, Australia. In Proceedings of the 30th IAH congress on groundwater: “Groundwater: Past achievements and future challenges”. Cape Town, South Africa, 2000-11-26 (pp. 567–573).

  • Mejri, S., Chekirbene, A., Tsujimura, M., Boughdiri, M., & Mlayah, A. (2018). Tracing groundwater salinization processes in an inland aquifer: A hydrogeochemical and isotopic approach in Sminja aquifer (Zaghouan, northeast of Tunisia). Journal of African Earth Sciences, 147, 511–522.

    Article  Google Scholar 

  • Merhebene, H. (1998). Piezometric database of the groundwater flow system of Mornag plain [Etablissement de la banque de données piézométriques du système aquifère de la plaine de Mornag]. Technical Report, DGRE, Tunis, 58p.

  • Milly, P. C., Dunne, K. A., & Vecchia, A. V. (2005). Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438(7066), 347–350.

    Article  Google Scholar 

  • Mishra, A. K., Deep, S., & Choudhary, A. (2015). Identification of suitable sites for organic farming using AHP & GIS. The Egyptian Journal of Remote Sensing and Space Science, 18(2), 181–193.

    Article  Google Scholar 

  • Mlayah, A., Ferreira Da Silva, E., Hatira, N., Jellali, S., Lachaal, F., Charef, A., Noronha, F., & Ben Hamza, C. (2011). Bassin d’oued Serrat: Terrils et rejets domestiques, reconnaissance des métaux lourds et polluants, impact sur les eaux souterraines (nord-ouest de la Tunisie). Revue Des Sciences De L’eau/journal of Water Science, 24(2), 159–175.

    Google Scholar 

  • Morsy, K. M., Morsy, A. M., & Hassan, A. E. (2018). Groundwater sustainability: Opportunity out of threat. Groundwater for Sustainable Development, 7, 277–285.

    Article  Google Scholar 

  • Moussa, A. B., Chandoul, S., Mzali, H., Salem, S. B. H., Elmejri, H., Zouari, K., Hafiane, A., & Mrabet, H. (2020). Hydrogeochemistry and evaluation of groundwater suitability for irrigation purpose in the Mornag region, northeastern Tunisia. Environment, Development and Sustainability, 23(2), 2698–2718.

    Article  Google Scholar 

  • Naudet, V., Revil, A., Rizzo, E., Bottero, J. Y., & Bégassat, P. (2004). Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations. Hydrology and Earth System Sciences, 8(1), 8–22.

    Article  Google Scholar 

  • Nayyeri, M., Hosseini, S. A., Javadi, S., & Sharafati, A. (2021). Spatial differentiation characteristics of groundwater stress index and its relation to land use and subsidence in the Varamin Plain, Iran. Natural Resources Research, 30(1), 339–357.

    Article  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water analysis. Transactions of the American Geophysical Union, 25, 914–923.

    Article  Google Scholar 

  • Praveena, S. M., Abdullah, M. H., Bidin, K., & Aris, A. Z. (2012). Sustainable groundwater management on the small island of Manukan, Malaysia. Environmental Earth Sciences, 66(3), 719–728.

    Article  Google Scholar 

  • Ranjan, R. (2012). Natural resource sustainability versus livelihood resilience: Model of groundwater exploitation strategies in developing regions. Journal of Water Resources Planning and Management, 138(5), 512–522.

    Article  Google Scholar 

  • Rekaya, M., (1987). Update of the hydrogeological context of Mornag plain [Actualisation du contexte hydrogéologique de la plaine de Mornag]. Technical Report, DGRE, Tunis, 18p.

  • Rengasamy, P., & Olsson, K. A. (1993). Irrigation and sodicity. Soil Research, 31(6), 821–837.

    Article  Google Scholar 

  • Rhoades, J. D., Krueger, D. B., & Reed, M. J. (1968). The effect of soil-mineral weathering on the sodium hazard of irrigation waters. Soil Science Society of America Journal, 32(5), 643–647.

    Article  Google Scholar 

  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. LWW. 78(2), 154

  • Rozanski, K., Araguás-Araguás, L., & Gonfiantini, R. (1993). Isotopic patterns in modern global precipitation. GMS, 78, 1–36.

    Google Scholar 

  • Saaty, T. L. (2000). Fundamentals of decision making and priority theory with the analytic hierarchy process (Vol. 6). RWS publications.

    Google Scholar 

  • Saaty, T. L. (2005). Theory and applications of the analytic network process: Decision making with benefits, opportunities, costs, and risks. RWS publications.

    Google Scholar 

  • Scanlon, B. R., Healy, R. W., & Cook, P. G. (2002). Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10(1), 18–39.

    Article  Google Scholar 

  • Scanlon, B. R., Keese, K. E., Flint, A. L., Flint, L. E., Gaye, C. B., Edmunds, W. M., & Simmers, I. (2006). Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes: An International Journal, 20(15), 3335–3370.

    Article  Google Scholar 

  • Schlesinger, W. H., Reynolds, J. F., Cunningham, G. L., Huenneke, L. F., Jarrell, W. M., Virginia, R. A., & Whitford, W. G. (1990). Biological feedbacks in global desertification. Science, 247(4946), 1043–1048.

    Article  Google Scholar 

  • Schoups, G., Addams, C. L., Minjares, J. L., & Gorelick, S. M. (2006). Sustainable conjunctive water management in irrigated agriculture: Model formulation and application to the Yaqui Valley, Mexico. Water Resources Research, 42, W10417. https://doi.org/10.1029/2006WR004922

    Article  Google Scholar 

  • Singha, K., & Gorelick, S. M. (2005). Saline tracer visualized with three-dimensional electrical resistivity tomography: Field-scale spatial moment analysis. Water Resources Research, 41(5), W05023. https://doi.org/10.1029/2004WR003460

    Article  Google Scholar 

  • Soussi, M., Mangold, C., Enay, R., Boughdiri, M., & Ben Ismail, M. H. (2000). Le Jurassique inférieur et moyen de la Tunisie septentrionale; corrélations avec l’Axe Nord-Sud et paléogéographie. Geobios, 33, 437–446.

    Article  Google Scholar 

  • Stimson, J., Frape, S., Drimmie, R., & Rudolph, D. (2001). Isotopic and geochemical evidence of regional-scale anisotropy and interconnectivity of an alluvial fan system, Cochabamba Valley Bolivia. Applied Geochemistry, 16(9–10), 1097–1114.

    Article  Google Scholar 

  • Todd, D. K., & Mays, L. W. (2004). Groundwater hydrology. JoWiley & Sons.

    Google Scholar 

  • Turki, M. M. (1985). Polycinématique et contrôle sédimentaire associé sur la cicatrice Zaghouan-Nebhana. Doctoral dissertation. University of Tunis El Manar, 262 p.

  • Vadiati, M., Adamowski, J., & Beynaghi, A. (2018). A brief overview of trends in groundwater research: Progress towards sustainability. Journal of Environmental Management, 223, 849–851.

    Article  Google Scholar 

  • Wilcox, L. V. (1948). The quality of water for irrigation use (No. 1488–2016–124600).

  • Wilcox, L. (1955). Classification and use of irrigation waters (No. 969). US Department of Agriculture.

  • Zaman, M., Shahid, S. A., & Heng, L. (2018). Irrigation water quality. Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques (pp. 113–131). Cham: Springer.

    Google Scholar 

  • Zaree, M., Javadi, S., & Neshat, A. (2019). Potential detection of water resources in karst formations using APLIS model and modification with AHP and TOPSIS. Journal of Earth System Science, 128(4), 1–12.

    Article  Google Scholar 

  • Zouari, K., Aranyossy, J. F., Mamou, A., & Fontes, J. C. (1985). Etude isotopique et géochimique des mouvements et de l’évolution des solutions de la zone aérée des sols sous climat semi-aride (Sud tunisien). Stable and Radioactive Isotopes in the Study of the Unsaturated Soil Zone, IAEA-TECDOC, 357, 121–143.

    Google Scholar 

  • Zume, J. T., & Tarhule, A. A. (2011). Modelling the response of an alluvial aquifer to anthropogenic and recharge stresses in the United States Southern Great Plains. Journal of Earth System Science, 120(4), 557–572.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anis Chekirbane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chekirbane, A., Gasmi, O., Mlayah, A. et al. Anthropogenic Aquifer Recharge Effect on Groundwater Resources in an Agricultural Floodplain in Northeastern Tunisia: Insights from Geochemical Tracers and Geophysical Methods. Nat Resour Res 31, 315–334 (2022). https://doi.org/10.1007/s11053-021-09991-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-021-09991-6

Keywords

Navigation