Skip to main content

Advertisement

Log in

Spatial Differentiation Characteristics of Groundwater Stress Index and its Relation to Land Use and Subsidence in the Varamin Plain, Iran

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Distributed modeling provides for mapping of spatial and temporal patterns of highly stressed regions, and it offers local solutions to reduce stress in aquifers. In this study, the groundwater stress index (GWSI) is evaluated based on the groundwater footprint index over the Varamin aquifer in Iran. Using ArcGIS software, all necessary layers were produced and then input into the Groundwater Modeling System software to evaluate GWSI. The results show that distributed modeling offers a more accurate assessment of GWSI than water budget analysis. The minimum and maximum values of the GWSI calculated by the distributed model are 2.4 and 1.4 times, respectively, higher than those values obtained in previous studies. Besides, a significant agreement was observed between highly stressed areas and agricultural land use. Furthermore, the results obtained from comparison between stress pattern and land subsidence indicated that only 10% of the area under subsidence was caused by groundwater stress. Applying appropriate scenarios in the future can be useful to reduce water stress and its increasing trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Al-Naeem, A. A. (2014). Effect of excess pumping on groundwater salinity and water level in Hail region of Saudi Arabia. Research Journal of Environmental Toxicology, 8(3), 124.

    Article  Google Scholar 

  • Atarzadeh, A. A., Tavana, B., & Abrazi, B. (2014). Quantitative and contamination studies of Varamin aquifer (groundwater studies). Tehran: Yekom Consulting Engineering.

    Google Scholar 

  • Banerji, S., Biswas, M., & Mitra, D. (2020). Semi-quantitative analysis of land use homogeneity and spatial distribution of individual ecological footprint in selected areas of Eastern fringes of Kolkata, West Bengal. Geocarto International, 35(1), 78–92.

    Article  Google Scholar 

  • Bredehoeft, J. D. (2002). The water budget myth revisited: Why hydrogeologists model. Groundwater, 40(4), 340–345.

    Article  Google Scholar 

  • Das, S. (2019). Comparison among influencing factor, frequency ratio, and analytical hierarchy process techniques for groundwater potential zonation in Vaitarna basin, Maharashtra, India. Groundwater for Sustainable Development, 8, 617–629.

    Article  Google Scholar 

  • Das, S., Gupta, A., & Ghosh, S. (2017). Exploring groundwater potential zones using MIF technique in semi-arid region: A case study of Hingoli district, Maharashtra. Spatial Information Research, 25(6), 749–756.

    Article  Google Scholar 

  • Das, S., & Pardeshi, S. D. (2018). Integration of different influencing factors in GIS to delineate groundwater potential areas using IF and FR techniques: A study of Pravara basin, Maharashtra, India. Applied Water Science, 8(7), 197.

    Article  Google Scholar 

  • Das, S., Pardeshi, S. D., Kulkarni, P. P., & Doke, A. (2018). Extraction of lineaments from different azimuth angles using geospatial techniques: A case study of Pravara basin, Maharashtra, India. Arabian Journal of Geosciences, 11(8), 160.

    Article  Google Scholar 

  • Dumont, A., Salmoral, G., & Llamas, M. R. (2013). The water footprint of a river basin with a special focus on groundwater: The case of Guadalquivir basin (Spain). Water Resources and Industry, 1, 60–76.

    Article  Google Scholar 

  • Esnault, L., Gleeson, T., Wada, Y., Heinke, J., Gerten, D., Flanary, E., et al. (2014). Linking groundwater use and stress to specific crops using the groundwater footprint in the Central Valley and High Plains aquifer systems, US. Water Resources Research, 50(6), 4953–4973.

    Article  Google Scholar 

  • Galloway, D. L., Hudnut, K. W., Ingebritsen, S. E., Phillips, S. P., Peltzer, G., Rogez, F., et al. (1998). Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resources Research, 34(10), 2573–2585.

    Article  Google Scholar 

  • Gambolati, G., & Teatini, P. (2015). Geomechanics of subsurface water withdrawal and injection. Water Resources Research, 51(6), 3922–3955.

    Article  Google Scholar 

  • Goode, D. J. (2016). Map visualization of groundwater withdrawals at the sub-basin scale. Hydrogeology Journal, 24(4), 1057–1065.

    Article  Google Scholar 

  • Gleeson, T., & Wada, Y. (2013). Assessing regional groundwater stress for nations using multiple data sources with the groundwater footprint. Environmental Research Letters, 8(4), 044010.

    Article  Google Scholar 

  • Gleeson, T., Wada, Y., Bierkens, M. F., & Van Beek, L. P. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature, 488(7410), 197–200.

    Article  Google Scholar 

  • Gorgij, A. D., Kisi, O., Moayeri, M. M., & Moghaddam, A. A. (2018). Hydraulic conductivity estimation via the AI-based numerical model optimization using the harmony search algorithm. Hydrology Research, 49(5), 1669–1683.

    Article  Google Scholar 

  • Guzy, A., & Malinowska, A. A. (2020). State of the art and recent advancements in the modelling of land subsidence induced by groundwater withdrawal. Water, 12(7), 2051.

    Article  Google Scholar 

  • Jafari, F., Javadi, S., Golmohammadi, G., Karimi, N., & Mohammadi, K. (2016). Numerical simulation of groundwater flow and aquifer-system compaction using simulation and InSAR technique: Saveh basin, Iran. Environmental Earth Sciences, 75(9), 833.

    Article  Google Scholar 

  • Kourgialas, N. N., Karatzas, G. P., Dokou, Z., & Kokorogiannis, A. (2018). Groundwater footprint methodology as policy tool for balancing water needs (agriculture and tourism) in water scarce islands-The case of Crete, Greece. Science of the Total Environment, 615, 381–389.

    Article  Google Scholar 

  • Mahmoudi, N., Nakhaei, M., & Porhemmat, J. (2017). Assessment of hydrogeochemistry and contamination of Varamin deep aquifer, Tehran Province, Iran. Environmental Earth Sciences, 76(10), 370.

    Article  Google Scholar 

  • Minderhoud, P. S. J., Coumou, L., Erban, L. E., Middelkoop, H., Stouthamer, E., & Addink, E. A. (2018). The relation between land use and subsidence in the Vietnamese Mekong delta. Science of The Total Environment, 634, 715–726.

    Article  Google Scholar 

  • Tafreshi, G. M., Nakhaei, M., & Lak, R. (2019). Land subsidence risk assessment using GIS fuzzy logic spatial modeling in Varamin aquifer, Iran. GeoJournal, 23, 1–21.

    Google Scholar 

  • Momeni, M., Shafiee, A., Heidari, M., Jafari, M. K., & Mahdavifar, M. R. (2012). Evaluation of soil collapse potential in regional scale. Natural hazards, 64(1), 459–479.

    Article  Google Scholar 

  • Nadiri, A. A., Chitsazan, N., Tsai, F. T. C., & Moghaddam, A. A. (2014). Bayesian artificial intelligence model averaging for hydraulic conductivity estimation. Journal of Hydrologic Engineering, 19(3), 520–532.

    Article  Google Scholar 

  • Nakhaei, M., Mohebbi Tafresh, A., & Mohebbi Tafreshi, G. (2019). Modeling and predicting changes of TDS concentration in Varamin aquifer using GMS software. Journal of Advanced Applied Geology. https://doi.org/10.22055/aag.2019.27539.1903.

    Article  Google Scholar 

  • Nejatijahromi, Z., Nassery, H. R., Hosono, T., Nakhaei, M., Alijani, F., & Okumura, A. (2019). Groundwater nitrate contamination in an area using urban wastewaters for agricultural irrigation under arid climate condition, southeast of Tehran, Iran. Agricultural Water Management, 221, 397–414.

    Article  Google Scholar 

  • Pacheco, J., Arzate, J., Rojas, E., Arroyo, M., Yutsis, V., & Ochoa, G. (2006). Delimitation of ground failure zones due to land subsidence using gravity data and finite element modeling in the Querétaro valley, México. Engineering Geology, 84(3–4), 143–160.

    Article  Google Scholar 

  • Paul, M. J. (2006). Impact of land-use patterns on distributed groundwater recharge and discharge. Chinese Geographical Science, 16(3), 229–235.

    Article  Google Scholar 

  • Pérez, A. J., Hurtado-Patiño, J., Herrera, H. M., Carvajal, A. F., Pérez, M. L., Gonzalez-Rojas, E., et al. (2019). Assessing sub-regional water scarcity using the groundwater footprint. Ecological Indicators, 96, 32–39.

    Article  Google Scholar 

  • Sheikhipour, B., Javadi, S., & Banihabib, M. E. (2018). A hybrid multiple criteria decision-making model for the sustainable management of aquifers. Environmental Earth Sciences, 77(19), 712.

    Article  Google Scholar 

  • Szucs, P., Madarasz, T., & Civan, F. (2009). Remediating over-produced and contaminated aquifers by artificial recharge from surface waters. Environmental Modeling and Assessment, 14(4), 511–520.

    Article  Google Scholar 

  • Valivand, F., & Katibeh, H. (2019). Application of numerical modeling and evaluate the effects of management scenarios in groundwater resources. International Transaction Engineering Management Science Technology. https://doi.org/10.14456/ITJEMAST.2020.107.

    Article  Google Scholar 

  • World water assessment programme (United Nations), and UN-Water. (2009).Water in a changing world, 1. Earthscan.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Abbas Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayyeri, M., Hosseini, S.A., Javadi, S. et al. Spatial Differentiation Characteristics of Groundwater Stress Index and its Relation to Land Use and Subsidence in the Varamin Plain, Iran. Nat Resour Res 30, 339–357 (2021). https://doi.org/10.1007/s11053-020-09758-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09758-5

Keywords

Navigation