Skip to main content
Log in

Use of Intelligent Methods to Design Effective Pattern Parameters of Mine Blasting to Minimize Flyrock Distance

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Flyrock is one of the most important environmental issues in mine blasting, which can affect equipment, people and could cause fatal accidents. Therefore, minimization of this environmental issue of blasting must be considered as the ultimate objective of many rock removal projects. This paper describes a new minimization procedure of flyrock using intelligent approaches, i.e., artificial neural network (ANN) and particle swarm optimization (PSO) algorithms. The most effective factors of flyrock were used as model inputs while the output of the system was set as flyrock distance. In the initial stage, an ANN model was constructed and proposed with high degree of accuracy. Then, two different strategies according to ideal and engineering condition designs were considered and implemented using PSO algorithm. The two main parameters of PSO algorithm for optimal design were obtained as 50 for number of particle and 1000 for number of iteration. Flyrock values were reduced in ideal condition to 34 m; while in engineering condition, this value was reduced to 109 m. In addition, an appropriate blasting pattern was proposed. It can be concluded that using the proposed techniques and patterns, flyrock risks in the studied mine can be significantly minimized and controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Ahmadi, M. A., & Shadizadeh, S. R. (2012). New approach for prediction of asphaltene precipitation due to natural depletion by using evolutionary algorithm concept. Fuel,102, 716–723.

    Article  Google Scholar 

  • Alavi Nezhad Khalil Abad, S. V., Yilmaz, M., Armaghani, D., & Tugrul, A. (2016). Prediction of the durability of limestone aggregates using computational techniques. Neural Computing and Applications. https://doi.org/10.1007/s00521-016-2456-8.

    Article  Google Scholar 

  • Armaghani, D., Hajihassani, M., Marto, A., Faradonbeh, R. S., & Mohamad, E. T. (2015). Prediction of blast-induced air overpressure: A hybrid AI-based predictive model. Environmental Monitoring and Assessment,187(11), 666. https://doi.org/10.1007/s10661-015-4895-6.

    Article  Google Scholar 

  • Armaghani, D., Hajihassani, M., Mohamad, E. T., Marto, A., & Noorani, S. A. (2014). Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization. Arabian Journal of Geosciences,7(12), 5383–5396.

    Article  Google Scholar 

  • Armaghani, D., Koopialipoor, M., Marto, A., & Yagiz, S. (2019). Application of several optimization techniques for estimating TBM advance rate in granitic rocks. Journal of Rock Mechanics and Geotechnical Engineering. https://doi.org/10.1016/j.jrmge.2019.01.002.

    Article  Google Scholar 

  • Armaghani, D., Mahdiyar, A., Hasanipanah, M., Faradonbeh, R. S., Khandelwal, M., & Amnieh, H. B. (2016a). Risk assessment and prediction of flyrock distance by combined multiple regression analysis and Monte Carlo simulation of quarry blasting. Rock Mechanics and Rock Engineering,49(9), 1–11. https://doi.org/10.1007/s00603-016-1015-z.

    Article  Google Scholar 

  • Armaghani, D., Mohamad, E. T., Hajihassani, M., Abad, S. V. A. N. K., Marto, A., & Moghaddam, M. R. (2016b). Evaluation and prediction of flyrock resulting from blasting operations using empirical and computational methods. Engineering with Computers,32(1), 109–121.

    Article  Google Scholar 

  • Armaghani, D., Mohamad, E., Narayanasamy, M. S., Narita, N., & Yagiz, S. (2017). Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunnelling and Underground Space Technology,63, 29–43. https://doi.org/10.1016/j.tust.2016.12.009.

    Article  Google Scholar 

  • Bajpayee, T. S., Rehak, T. R., Mowrey, G. L., & Ingram, D. K. (2004). Blasting injuries in surface mining with emphasis on flyrock and blast area security. Journal of Safety Research,35(1), 47–57.

    Article  Google Scholar 

  • Bhandari, S. (1997). Engineering rock blasting operations. A. A. Balkema,388, 388.

    Google Scholar 

  • Bui, X.-N., Nguyen, H., Le, H.-A., Bui, H.-B., & Do, N.-H. (2019). Prediction of blast-induced air over-pressure in open-pit mine: Assessment of different artificial intelligence techniques. Natural Resources Research. https://doi.org/10.1007/s11053-019-09461-0.

    Article  Google Scholar 

  • Faradonbeh, R. S., Armaghani, D., Amnieh, H. B., & Mohamad, E. T. (2016a). Prediction and minimization of blast-induced flyrock using gene expression programming and firefly algorithm. Neural Computing and Applications,29, 269–281. https://doi.org/10.1007/s00521-016-2537-8.

    Article  Google Scholar 

  • Faradonbeh, R. S., Armaghani, D., & Monjezi, M. (2016b). Development of a new model for predicting flyrock distance in quarry blasting: A genetic programming technique. Bulletin of Engineering Geology and the Environment,75(3), 993–1006. https://doi.org/10.1007/s10064-016-0872-8.

    Article  Google Scholar 

  • Faradonbeh, R. S., Armaghani, D., & Monjezi, M. (2016c). Development of a new model for predicting flyrock distance in quarry blasting: A genetic programming technique. Bulletin of Engineering Geology and the Environment,75(3), 993–1006.

    Article  Google Scholar 

  • Gandomi, A. H. (2014). Interior search algorithm (ISA): A novel approach for global optimization. ISA Transactions,53(4), 1168–1183.

    Article  Google Scholar 

  • Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation,17(12), 4831–4845.

    Article  Google Scholar 

  • Gandomi, A. H., Yang, X.-S., Talatahari, S., & Alavi, A. H. (2013). Metaheuristic algorithms in modeling and optimization. In A. H. Gandomi, X.-S. Yang, S. Talatahari, & A. H. A. Newnes (Eds.), Metaheuristic Applications in Structures and Infrastructures (pp. 1–24). Oxford: Elsevier. https://doi.org/10.1016/B978-0-12-398364-0.00001-2; http://www.sciencedirect.com/science/article/pii/B9780123983640000012.

  • Ghasemi, E., Amini, H., Ataei, M., & Khalokakaei, R. (2014). Application of artificial intelligence techniques for predicting the flyrock distance caused by blasting operation. Arabian Journal of Geosciences,7(1), 193–202.

    Article  Google Scholar 

  • Ghasemi, E., Sari, M., & Ataei, M. (2012). Development of an empirical model for predicting the effects of controllable blasting parameters on flyrock distance in surface mines. International Journal of Rock Mechanics and Mining Sciences,52, 163–170. https://doi.org/10.1016/j.ijrmms.2012.03.011.

    Article  Google Scholar 

  • Hajihassani, M., Armaghani, D., & Kalatehjari, R. (2017). Applications of particle swarm optimization in geotechnical engineering: A comprehensive review. Geotechnical and Geological Engineering. https://doi.org/10.1007/s10706-017-0356-z.

    Article  Google Scholar 

  • Hasanipanah, M., Armaghani, D., Khamesi, H., Bakhshandeh Amnieh, H., & Ghoraba, S. (2016). Several non-linear models in estimating air-overpressure resulting from mine blasting. Engineering with Computers,32(3), 441–455. https://doi.org/10.1007/s00366-015-0425-y.

    Article  Google Scholar 

  • Haykin, S. (1999). Neural networks. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Hecht-Nielsen, R. (1987). Kolmogorov’s mapping neural network existence theorem. In Proceedings of the international conference on Neural Networks (Vol. 3, pp. 11–13). New York: IEEE Press.

  • Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks,2(5), 359–366.

    Article  Google Scholar 

  • Hush, D. R. (1989). Classification with neural networks: a performance analysis. In Proceedings of the IEEE International conference on systems engineering (pp. 277–280).

  • Hustrulid, W. A. (1999). Blasting principles for open pit mining: General design concepts. Amsterdam: Balkema.

    Google Scholar 

  • Kaastra, I., & Boyd, M. (1996). Designing a neural network for forecasting financial and economic time series. Neurocomputing,10(3), 215–236.

    Article  Google Scholar 

  • Kanellopoulos, I., & Wilkinson, G. G. (1997). Strategies and best practice for neural network image classification. International Journal of Remote Sensing,18(4), 711–725.

    Article  Google Scholar 

  • Kecojevic, V., & Radomsky, M. (2005). Flyrock phenomena and area security in blasting-related accidents. Safety Science,43(9), 739–750.

    Article  Google Scholar 

  • Kennedy, J., & Eberhart, R. C. (1995). A discrete binary version of the particle swarm algorithm. In 1997 IEEE international conference on systems, man, and cybernetics, 1997. Computational cybernetics and simulation (Vol. 5, pp. 4104–4108). IEEE.

  • Khandelwal, M., & Monjezi, M. (2013). Prediction of backbreak in open-pit blasting operations using the machine learning method. Rock Mechanics and Rock Engineering,46(2), 389–396.

    Article  Google Scholar 

  • Khandelwal, M., & Singh, T. N. (2009). Prediction of blast-induced ground vibration using artificial neural network. International Journal of Rock Mechanics and Mining Sciences,46(7), 1214–1222.

    Article  Google Scholar 

  • Koopialipoor, M., Armaghani, D., Haghighi, M., & Ghaleini, E. N. (2017). A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels. Bulletin of Engineering Geology and the Environment,78, 981–990.

    Article  Google Scholar 

  • Koopialipoor, M., Armaghani, D., Hedayat, A., Marto, A., & Gordan, B. (2018a). Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions. Soft Computing. https://doi.org/10.1007/s00500-018-3253-3.

    Article  Google Scholar 

  • Koopialipoor, M., Fahimifar, A., Ghaleini, E. N., Momenzadeh, M., & Armaghani, D. (2019a). Development of a new hybrid ANN for solving a geotechnical problem related to tunnel boring machine performance. Engineering with Computers. https://doi.org/10.1007/s00366-019-00701-8.

    Article  Google Scholar 

  • Koopialipoor, M., Fallah, A., Armaghani, D., Azizi, A., & Mohamad, E. (2018b). Three hybrid intelligent models in estimating flyrock distance resulting from blasting. Engineering with Computers,35, 243–256.

    Article  Google Scholar 

  • Koopialipoor, M., Ghaleini, E. N., Haghighi, M., Kanagarajan, S., Maarefvand, P., & Mohamad, E. T. (2018c). Overbreak prediction and optimization in tunnel using neural network and bee colony techniques. Engineering with Computers. https://doi.org/10.1007/s00366-018-0658-7.

    Article  Google Scholar 

  • Koopialipoor, M., Ghaleini, E. N., Tootoonchi, H., Armaghani, D., Haghighi, M., & Hedayat, A. (2019b). Developing a new intelligent technique to predict overbreak in tunnels using an artificial bee colony-based ANN. Environmental Earth Sciences,78(5), 165. https://doi.org/10.1007/s12665-019-8163-x.

    Article  Google Scholar 

  • Koopialipoor, M., Murlidhar, B. R., Hedayat, A., Armaghani, D., Gordan, B., & Mohamad, E. (2019c). The use of new intelligent techniques in designing retaining walls. Engineering with Computers. https://doi.org/10.1007/s00366-018-0658-7.

    Article  Google Scholar 

  • Koopialipoor, M., Noorbakhsh, A., Noroozi Ghaleini, E., Armaghani, D., & Yagiz, S. (2019d). A new approach for estimation of rock brittleness based on non-destructive tests. Nondestructive Testing and Evaluation. https://doi.org/10.1080/10589759.2019.1623214.

    Article  Google Scholar 

  • Koopialipoor, M., Tootoonchi, H., Armaghani, D., Mohamad, E., & Hedayat, A. (2019e). Application of deep neural networks in predicting the penetration rate of tunnel boring machines. Bulletin of Engineering Geology and the Environment. https://doi.org/10.1007/s10064-019-01538-7.

    Article  Google Scholar 

  • Liao, X., Khandelwal, M., Yang, H., Koopialipoor, M., & Murlidhar, B. R. (2019). Effects of a proper feature selection on prediction and optimization of drilling rate using intelligent techniques. Engineering with Computers. https://doi.org/10.1007/s00366-019-00711-6.

    Article  Google Scholar 

  • Little, T. N., & Blair, D. P. (2010). Mechanistic Monte Carlo models for analysis of flyrock risk. Rock Fragmentation by Blasting,9, 641–647.

    Google Scholar 

  • Lundborg, N., Persson, A., Ladegaard-Pedersen, A., & Holmberg, R. (1975). Keeping the lid on flyrock in open-pit blasting. Engineering and Mining Journal,176, 95–100.

    Google Scholar 

  • Marto, A., Hajihassani, M., Armaghani, D., Mohamad, E., & Makhtar, A. M. (2014). A novel approach for blast-induced flyrock prediction based on imperialist competitive algorithm and artificial neural network. The Scientific World Journal, 2014(5), 643715. https://doi.org/10.1155/2014/643715.

    Article  Google Scholar 

  • Masters, T. (1993). Practical neural network recipes in C++. Los Altos: Morgan Kaufmann.

    Google Scholar 

  • McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics,5(4), 115–133.

    Article  Google Scholar 

  • Millonas, M. M. (1993). Swarms, phase transitions, and collective intelligence. arXiv preprint arXiv:adap-org/9306002.

  • Mohamad, E., Armaghani, D., Hajihassani, M., Faizi, K., & Marto, A. (2013). A simulation approach to predict blasting-induced flyrock and size of thrown rocks. Electronic Journal of Geotechnical Engineering,18B, 365–374.

    Google Scholar 

  • Mohamad, E., Armaghani, D., Momeni, E., Yazdavar, A. H., & Ebrahimi, M. (2016). Rock strength estimation: A PSO-based BP approach. Neural Computing and Applications,30, 1635–1646. https://doi.org/10.1007/s00521-016-2728-3.

    Article  Google Scholar 

  • Mohandes, M. A. (2012). Modeling global solar radiation using particle swarm optimization (PSO). Solar Energy,86(11), 3137–3145.

    Article  Google Scholar 

  • Monjezi, M., Hasanipanah, M., & Khandelwal, M. (2013). Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network. Neural Computing and Applications,22(7–8), 1637–1643.

    Article  Google Scholar 

  • Monjezi, M., Khoshalan, H. A., & Varjani, A. Y. (2012). Prediction of flyrock and backbreak in open pit blasting operation: A neuro-genetic approach. Arabian Journal of Geosciences,5(3), 441–448.

    Article  Google Scholar 

  • Nguyen, H., & Bui, X.-N. (2018). Predicting blast-induced air overpressure: A robust artificial intelligence system based on artificial neural networks and random forest. Natural Resources Research,28, 893–907. https://doi.org/10.1007/s11053-018-9424-1.

    Article  Google Scholar 

  • Nguyen, H., Bui, X.-N., Tran, Q.-H., Le, T.-Q., & Do, N.-H. (2019a). Evaluating and predicting blast-induced ground vibration in open-cast mine using ANN: A case study in Vietnam. SN Applied Sciences,1(1), 125.

    Article  Google Scholar 

  • Nguyen, H., Bui, X.-N., Tran, Q.-H., & Mai, N.-L. (2019b). A new soft computing model for estimating and controlling blast-produced ground vibration based on hierarchical K-means clustering and cubist algorithms. Applied Soft Computing,77, 376–386.

    Article  Google Scholar 

  • Paola, J. D. (1994). Neural network classification of multispectral imagery. Master Tezi, The University of Arizona, USA.

  • Priddy, K. L., & Keller, P. E. (2005). Artificial neural networks: An introduction (Vol. 68). Bellingham: SPIE Press.

    Book  Google Scholar 

  • Raina, A. K., Chakraborty, A. K., More, R., & Choudhury, P. B. (2007). Design of factor of safety based criterion for control of flyrock/throw and optimum fragmentation. Journal of The Institution of Engineers (India),87, 13–17.

    Google Scholar 

  • Raina, A. K., Murthy, V., & Soni, A. K. (2014). Flyrock in bench blasting: A comprehensive review. Bulletin of Engineering Geology and the Environment,73(4), 1199–1209.

    Article  Google Scholar 

  • Razi, M. A., & Athappilly, K. (2005). A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models. Expert Systems with Applications,29(1), 65–74.

    Article  Google Scholar 

  • Rezaei, M., Monjezi, M., & Varjani, A. (2011). Development of a fuzzy model to predict flyrock in surface mining. Safety science,49, 298–305.

    Article  Google Scholar 

  • Ripley, B. D. (1993). Statistical aspects of neural networks. Networks and Chaos—Statistical and Probabilistic Aspects,50, 40–123.

    Article  Google Scholar 

  • Roth, J. (1979). A model for the determination of flyrock range as a function of shot conditions. US Bureau of Mines contract J0387242. Management Science Associates, Los Altos.

  • Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In The 1998 IEEE international conference on evolutionary computation proceedings, 1998. IEEE world congress on computational intelligence (pp. 69–73). IEEE.

  • Shi, X., Jian, Z., Wu, B., Huang, D., & Wei, W. E. I. (2012). Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction. Transactions of Nonferrous Metals Society of China,22(2), 432–441.

    Article  Google Scholar 

  • Simpson, P. K. (1990). Artificial neural systems. New York: Pergamon.

    Google Scholar 

  • Singh, T. N., & Singh, V. (2005). An intelligent approach to prediction and control ground vibration in mines. Geotechnical and Geological Engineering,23(3), 249–262.

    Article  Google Scholar 

  • Talatahari, S., Kheirollahi, M., Farahmandpour, C., & Gandomi, A. H. (2013). A multi-stage particle swarm for optimum design of truss structures. Neural Computing and Applications,23(5), 1297–1309.

    Article  Google Scholar 

  • Tiryaki, B. (2008). Predicting intact rock strength for mechanical excavation using multivariate statistics, artificial neural networks, and regression trees. Engineering Geology,99(1–2), 51–60.

    Article  Google Scholar 

  • Trivedi, R., Singh, T. N., & Gupta, N. (2015). Prediction of blast-induced flyrock in opencast mines using ANN and ANFIS. Geotechnical and Geological Engineering,33(4), 875–891.

    Article  Google Scholar 

  • Trivedi, R., Singh, T. N., & Raina, A. K. (2014). Prediction of blast-induced flyrock in Indian limestone mines using neural networks. Journal of Rock Mechanics and Geotechnical Engineering,6(5), 447–454.

    Article  Google Scholar 

  • Verma, A. K., & Singh, T. N. (2011). Intelligent systems for ground vibration measurement: A comparative study. Engineering with Computers,27(3), 225–233.

    Article  Google Scholar 

  • Voss, M. S. (2003). Social programming using functional swarm optimization. In Proceedings of the 2003 IEEE swarm intelligence symposium, 2003. SIS’03 (pp. 103–109). IEEE.

  • Wang, C. (1994). A theory of generalization in learning machines with neural network applications. Phd thesis, The University of Pennsylvania, USA.

  • Wang, M., Shi, X., & Zhou, J. (2019). Optimal charge scheme calculation for multiring blasting using modified harries mathematical model. Journal of Performance of Constructed Facilities,33(2), 4019002.

    Article  Google Scholar 

  • Wang, M., Shi, X., Zhou, J., & Qiu, X. (2018). Multi-planar detection optimization algorithm for the interval charging structure of large-diameter longhole blasting design based on rock fragmentation aspects. Engineering Optimization,50(12), 2177–2191.

    Article  Google Scholar 

  • Zhao, Y., Noorbakhsh, A., Koopialipoor, M., Azizi, A., & Tahir, M. M. (2019). A new methodology for optimization and prediction of rate of penetration during drilling operations. Engineering with Computers. https://doi.org/10.1007/s00366-019-00715-2.

    Article  Google Scholar 

  • Zhou, J., Aghili, N., Ghaleini, E. N., Bui, D. T., Tahir, M. M., & Koopialipoor, M. (2019). A Monte Carlo simulation approach for effective assessment of flyrock based on intelligent system of neural network. Engineering with Computers. https://doi.org/10.1007/s00366-019-00726-z.

    Article  Google Scholar 

  • Zhou, J., Li, X., & Mitri, H. S. (2016). Classification of rockburst in underground projects: Comparison of ten supervised learning methods. Journal of Computing in Civil Engineering,30(5), 4016003.

    Article  Google Scholar 

  • Zurada, J. M. (1992). Introduction to artificial neural systems (Vol. 8). West St: Paul.

    Google Scholar 

Download references

Acknowledgments

This research is partially supported by the National Natural Science Foundation Project of China (Grant No. 41807259), the Shanghai Laying Program of Central South University (Principle Investigator: Dr. Jian Zhou), and the Natural Science Foundation of Hunan Province (Grant No. 2018JJ3693).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danial Jahed Armaghani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Koopialipoor, M., Murlidhar, B.R. et al. Use of Intelligent Methods to Design Effective Pattern Parameters of Mine Blasting to Minimize Flyrock Distance. Nat Resour Res 29, 625–639 (2020). https://doi.org/10.1007/s11053-019-09519-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-019-09519-z

Keywords

Navigation