Skip to main content

Advertisement

Log in

Critical Zone Assessments of an Alluvial Aquifer System Using the Multi-influencing Factor (MIF) and Analytical Hierarchy Process (AHP) Models in Western Iran

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Many arid regions in the world suffer from over-exploitation of local groundwater resources leading to the degradation of freshwater aquifer systems, drying of spring discharges, and other damage to land and infrastructure. The development of groundwater critical zone maps (GCZMs) using the best available data is one important method that can be used by decision makers to develop a justifiable regulatory framework that may ban future use of wells. The multi-influencing factor (MIF) and the analytical hierarchy process (AHP) methods were used to create GCZMs for the Kangavar sub-catchment basin (aquifer system) of western Iran. Seven mapped factors were used as input into the models that included spatial occurrence of geological formations, aquifer lithologies, aquifer thickness, aquifer recharge, annual groundwater discharge (including water use), water-well density, and groundwater quality (degradation). Weighting factors were placed on the input data based on expert opinions, and the created thematic maps were combined using the weighted sum tool within a GIS framework to create two separate GCZMs. It was found that both methods produced acceptable and similar results, but based on a receiver operating characteristic curve analysis of internal error the MIF model (0.82) was > 10% more accurate compared to the AHP model (0.72). Critical and subcritical classification areas within the basin covered areas of 94 and 77.7 km2 in the MIF and AHP maps, respectively. Banning of water-well construction in these areas is therefore technically justifiable and demonstrates the need to use two methods for development and verification of GCZMs with varying assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Ab W Tose'e Paidar. (2013). Karkheh Watershed Atlas Project (KWAP), Water budget study report for Kangavar Sub-Catchment (Code: 2231), Kermanshah Regional Water Authority, Kermanshah, Iran. (In Persian)

  • Ahmed, R., & Sajjad, H. (2018). Analyzing factors of groundwater potential and its relation with population in the lower Barpani watershed, Assam, India. Natural Resources Research,27(4), 503–515.

    Article  Google Scholar 

  • Ahmed, R., Sajjad, H., & Husain, I. (2018). Morphometric parameters-based prioritization of sub-watersheds using fuzzy analytical hierarchy process: A case study of lower Barpani watershed, India. Natural Resources Research,27(1), 67–75.

    Article  Google Scholar 

  • Aladejana, O. O., Anifowose, A. Y. B., & Fagbohun, B. J. (2016). Testing the ability of an empirical hydrological model to verify a knowledge-based groundwater potential zone mapping methodology. Model Earth System Environment,2, 174.

    Google Scholar 

  • Alavi, M. (1996). Tectonostratigraphic synthesis and structural style of the Alborz mountain system in northern Iran. Journal of Geodynamics,21(1), 1–33.

    Article  Google Scholar 

  • Aller, L., Lehr, J. H., Petty, R., & Bennett, T. (1987). DRASTIC: A standardized system to evaluate groundwater pollution potential using hydrogeologic settings. Worthington, Ohio: National Water Well Association.

    Google Scholar 

  • Amidi, M., & Majidi, B. (1977). Geological map of Hamadan (scale 1: 250,000). Tehran: Geological Survey of Iran.

    Google Scholar 

  • Basistha, A., Arya, D. S., & Goel, N. K. (2008). Spatial distribution of rainfall in Indian Himalayas–a case study of Uttarakhand region. Water Resources Management,22(10), 1325–1346.

    Article  Google Scholar 

  • Bekesi, G., & McConchie, J. (2002). The use of aquifer media characteristics to model vulnerability to contamination, Manawatu Region, New Zealand. Hydrogeology Journal,10(2), 322–331.

    Article  Google Scholar 

  • Bhushan, N., & Rai, K. (2004). Strategic decision making: Applying the analytical hierarchy process. Heidelberg: Springer.

    Google Scholar 

  • Braud, J. (1987). La Suture du Zagros au niveau de Kermanshah (Kurdistan Iranien): Reconstitution paléogéographique: Évolution géodynamique, magmatique et structural. Unpublished Ph.D. dissertation, Paris 11, France.

  • Chen, C., Pei, S., & Jiao, J. (2003). Land subsidence caused by groundwater exploitation in Suzhou City, China. Hydrogeology Journal,11(2), 275–287.

    Article  Google Scholar 

  • Chhabra, R. (2004). Classification of salt-affected soils. Arid Land Research and Management, 19(1), 61–79.

    Article  Google Scholar 

  • Chitsazan, M., & Akhtari, Y. (2009). A GIS-based DRASTIC model for assessing aquifer vulnerability in Kherran Plain, Khuzestan, Iran. Water Resources Management,23(6), 1137–1155.

    Article  Google Scholar 

  • Chowdhury, A., Jha, M. K., Chowdary, V. M., & Mal, B. C. (2009). Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur District, West Bengal, India. International Journal of Remote Sensing,30(1), 231–250.

    Article  Google Scholar 

  • Chung, C. J. F., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards,30(3), 451–472.

    Article  Google Scholar 

  • Custodio, E. (1993). Hydrogeological and hydrochemical aspects of aquifer overexploitation. In Aquifer overexploitation. Int. Assoc. Hydrogeol. Selected Papers 3, Heise, Germany, pp 3–28.

  • Custodio, E. (2002). Aquifer overexploitation: What does it mean? Hydrogeology Journal,10(2), 254–277.

    Article  Google Scholar 

  • Dar, I. A., Sankar, K., & Dar, M. A. (2010). Remote sensing technology and geographic information system modeling: An integrated approach towards the mapping of groundwater potential zones in Hardrock terrain, Mamundiyar basin. Journal of Hydrology,394(3), 285–295.

    Article  Google Scholar 

  • Donevska, K. R., Gorsevski, P. V., Jovanovski, M., & Peševski, I. (2012). Regional non-hazardous landfill site selection by integrating fuzzy logic, AHP and geographic information systems. Environmental Earth Sciences,67(1), 121–131.

    Article  Google Scholar 

  • Eastman, J. R. (2015). TerrSet: Geospatial monitoring and modeling software. Worcester: Clark Labs, Clark University.

    Google Scholar 

  • Fagbohun, B. J. (2018). Integrating GIS and multi-influencing factor technique for delineation of potential groundwater recharge zones in parts of Ilesha schist belt, southwestern Nigeria. Environmental Earth Sciences,77(69), 1–18.

    Google Scholar 

  • Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters,27(8), 861–874.

    Article  Google Scholar 

  • Ferri, C., Flach, P., & Hernández-Orallo, J. (2002). Learning decision trees using the area under the ROC curve. ICML,2, 139–146.

    Google Scholar 

  • Ghorbani Nejad, S., Falah, F., Daneshfar, M., Haghizadeh, A., & Rahmati, O. (2017). Delineation of groundwater potential zones using remote sensing and GIS-based data-driven models. Geocarto International,32(2), 167–187.

    Google Scholar 

  • Gutiérrez, F., Parise, M., De Waele, J., & Jourde, H. (2014). A review on natural and human-induced geohazards and impacts in karst. Earth-Science Reviews,138, 61–88.

    Article  Google Scholar 

  • Heidari, M., Khanlari, G. R., Beydokhti, A. T., & Momeni, A. A. (2011). The formation of cover collapse sinkholes in North of Hamedan, Iran. Geomorphology,132(3), 76–86.

    Article  Google Scholar 

  • Hosmer, D. W., Jr., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression (Vol. 398). New York: Wiley.

    Book  Google Scholar 

  • Jara, J. J., Moreno, F., Jara, R., Dubournais, F., Mata, R., Peters, D., et al. (2018). Ranking of placer gold prospects in Chile through analytic hierarchy process. Natural Resources Research,28(3), 813–832.

    Article  Google Scholar 

  • Jha, M. K., Chowdhury, A., Chowdary, V. M., & Peiffer, S. (2007). Groundwater management and development by integrated remote sensing and geographic information systems: Prospects and constraints. Water Resources Management,21(2), 427–467.

    Article  Google Scholar 

  • Karimi, H., & Taheri, K. (2010). Hazards and mechanism of sinkholes on Kabudar Ahang and Famenin plains of Hamadan, Iran. Natural Hazards,55(2), 481–499.

    Article  Google Scholar 

  • Khanlari, G., Heidari, M., Momeni, A. A., Ahmadi, M., & Beydokhti, A. T. (2012). The effect of groundwater overexploitation on land subsidence and sinkhole occurrences, western Iran. Quarterly Journal of Engineering Geology and Hydrogeology,45(4), 447–456.

    Article  Google Scholar 

  • Konikow, L. F., & Kendy, E. (2005). Groundwater depletion: A global problem. Hydrogeology Journal,13, 317–320.

    Article  Google Scholar 

  • Lodwic, W. A., Monson, W., & Svoboda, L. (1990). Attribute error and sensitivity analysis of map operations in geographical information systems: Suitability analysis. International Journal of Geographical Information System, 4(4), 413–428.

    Article  Google Scholar 

  • Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2012). Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geoscience Frontiers,3(2), 189–196.

    Article  Google Scholar 

  • Mahato, S., & Pal, S. (2019). Groundwater potential mapping in a rural river basin by Union (OR) and Intersection (AND) of four multi-criteria decision-making models. Natural Resources Research,28(2), 523–545.

    Article  Google Scholar 

  • Maier, H. R., & Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environmental Modelling and Software,15(1), 101–124.

    Article  Google Scholar 

  • Maliva, R. G., & Missimer, T. M. (2012). Arid lands evaluation and management (p. 1076). Berlin: Springer.

    Book  Google Scholar 

  • Manap, M. A., Suliaman, W. N. A., Ramli, M. F., Pradhan, B., & Surip, N. (2013). A knowledge-driven GIS modeling technique for groundwater potential mapping at the Upper Langat Basin, Malaysia. Arabian Journal of Geosciences,6(5), 1621–1637.

    Article  Google Scholar 

  • Ministry of Energy of Iran. (2008). Groundwater management guideline no. 322. Tehran, Iran: Ministry of Energy.

  • Mjemah, I. C., Van Camp, M., & Walraevens, K. (2009). Groundwater exploitation and hydraulic parameter estimation for a Quaternary aquifer in Dar-Es-Salaam Tanzania. Journal of African Earth Sciences,55(3), 134–146.

    Article  Google Scholar 

  • Moghaddam, D. D., Rezaei, M., Pourghasemi, H. R., Pourtaghie, Z. S., & Pradhan, B. (2015). Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan watershed, Iran. Arabian Journal of Geosciences,8(2), 913–929.

    Article  Google Scholar 

  • Mohajjel, M., Fergusson, C. L., & Sahandi, M. R. (2003). Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan zone, western Iran. Journal of Asian Earth Sciences,21(4), 397–412.

    Article  Google Scholar 

  • Mohammadi-Behzad, H. R., Charchi, A., Kalantari, N., Nejad, A. M., & Vardanjani, H. K. (2018). Delineation of groundwater potential zones using remote sensing (RS), geographical information system (GIS) and analytic hierarchy process (AHP) techniques: A case study in the Leylia-Keynow watershed, southwest of Iran. Carbonates and Evaporites. https://doi.org/10.1007/s13146-018-0420-7.

    Article  Google Scholar 

  • Mukherjee, P., Singh, C. K., & Mukherjee, S. (2012). Delineation of groundwater potential zones in arid region of India—a remote sensing and GIS approach. Water Resources Management,26(9), 2643–2672.

    Article  Google Scholar 

  • Munier, N. (2011). A Strategy for using multicriteria analysis in decision-making: A guide for simple and complex environmental projects. Heidelberg: Springer.

    Book  Google Scholar 

  • Naghibi, S. A., Pourghasemi, H. R., & Dixon, B. (2016). GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental Monitoring and Assessment,188(1), 44.

    Article  Google Scholar 

  • Napolitano, P., & Fabbri, A. G. (1996). Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences,235, 559–566.

    Google Scholar 

  • Neshat, A., Pradhan, B., & Dadras, M. (2014). Groundwater vulnerability assessment using an improved DRASTIC method in GIS. Resources, Conservation and Recycling,86, 74–86.

    Article  Google Scholar 

  • Ozdemir, A. (2011). Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). Journal of Hydrology,405(1), 123–136.

    Article  Google Scholar 

  • Pacheco, F. A. L., Pires, L. M. G. R., Santos, R. M. B., & Fernandes, L. F. (2015). Factor weighting in DRASTIC modeling. Science of the Total Environment,505, 474–486.

    Article  Google Scholar 

  • Piscopo, G. (2001). Groundwater vulnerability map explanatory notes, Lachlan Catchment, NSW (p. 14). Parramatta: Department of Land and Water Conservation.

    Google Scholar 

  • Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., Mohammadi, M., & Moradi, H. R. (2013). Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arabian Journal of Geosciences,6(7), 2351–2365.

    Article  Google Scholar 

  • Pradhan, B. (2009). Groundwater potential zonation for basaltic watersheds using satellite remote sensing data and GIS techniques. Open Geosciences,1(1), 120–129.

    Article  Google Scholar 

  • Prasad, R. K., Mondal, N. C., Banerjee, P., Nandakumar, M. V., & Singh, V. S. (2008). Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology,55(3), 467–475.

    Article  Google Scholar 

  • Raghunath, H. M. (2006). Hydrology: Principles, analysis and design (2nd ed.). New Delhi: New Age International.

    Google Scholar 

  • Rahmati, O., Pourghasemi, H. R., & Melesse, A. M. (2016). Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. Catena,137, 360–372.

    Article  Google Scholar 

  • Rao, K. (1970). Hydrometeorological aspects of estimating ground water potential. In Seminar on ground water potential, Bangalore (pp. 1–18). Geological Society of India.

  • Rawlings, J. O., Pantula, S. G., & Dickey, D. A. (2001). Applied regression analysis: A research tool. Berlin: Springer.

    Google Scholar 

  • Reddy, V. R. (2005). Costs of resource depletion externalities: A study of groundwater overexploitation in Andhra, India. Environment and Development Economics,10(4), 533–556.

    Article  Google Scholar 

  • Roases, J., Lopez, O., Missimer, T. M., Coulibaly, K., Dehwah, A. H. A., Sesler, K., et al. (2014). Determination of hydraulic conductivity from grain size distribution for different depositional environments. Groundwater,52(3), 399–413.

    Article  Google Scholar 

  • Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology,15(3), 234–281.

    Article  Google Scholar 

  • Saaty, T. L. (1980). Multicriteria decision making. The analytic hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  • Saaty, T. L. (2006). Rank from comparisons and from ratings in the analytic hierarchy/network processes. The European Journal of Operational Research,168(2), 557–570.

    Article  Google Scholar 

  • Saaty, T. L., & Vargas, L. G. (2007). Dispersion of group judgments. Mathematical and Computer Modelling,46(7–8), 918–925.

    Article  Google Scholar 

  • Sahoo, S., Dhar, A., Debsarkar, A., & Kar, A. (2019). Future scenarios of environmental vulnerability mapping using grey analytic hierarchy process. Natural Resources Research. https://doi.org/10.1007/s11053-019-09462-z.

    Article  Google Scholar 

  • Sander, P., Chesley, M. M., & Minor, T. B. (1996). Groundwater assessment using remote sensing and GIS in a rural groundwater project in Ghana: Lessons learned. Hydrogeology Journal,4(3), 40–49.

    Article  Google Scholar 

  • Sener, E., & Davraz, A. (2013). Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: The case of Egirdir Lake basin (Isparta, Turkey). Hydrogeology Journal,21(3), 701–714.

    Article  Google Scholar 

  • Sener, E., Davraz, A., & Ozcelik, M. (2005). An integration of GIS and remote sensing in groundwater investigations: A case study in Burdur, Turkey. Hydrogeology Journal,13(5–6), 826–834.

    Article  Google Scholar 

  • Shaban, A. (2003). Studying the hydrogeology of Occidental Lebanon: utilization of remote sensing. Etude de l’hydrog´eologie du Liban occidental: Utilisation de la t´el´ed´etection. Th`ese de doctorat, Universit´e Bordeaux 1, 202 pp.

  • Shaban, A., Khawlie, M., & Abdallah, C. (2006). Use of remote sensing and GIS to determine recharge potential zones: The case of Occidental Lebanon. Hydrogeology Journal,14(4), 433–443.

    Article  Google Scholar 

  • Shaban, A., Khawlie, M., Bou Kheir, R., & Abdallah, C. (2001). Assessment of road instability along a typical mountainous road using GIS and aerial photos, Lebanon - eastern Mediterranean. Bulletin of Engineering Geology and the Environment,60, 93–101.

    Article  Google Scholar 

  • Shahabi, H., Khezri, S., Ahmad, B. B., & Hashim, M. (2014). Landslide susceptibility mapping at central Zab basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models. Catena, 115, 55–70.

    Article  Google Scholar 

  • Shahidi, M., & Nazari, H. (1997). Geological map of Harsin, 1/100.000 scale. Tehran: Geological Survey of Iran.

  • Shekhar, S., & Pandey, A. C. (2015). Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques. Geocarto International,30(4), 402–421.

    Article  Google Scholar 

  • Shirazi, S. M., Imran, H. M., & Akib, S. (2012). GIS-based DRASTIC method for groundwater vulnerability assessment: A review. Journal of Risk Research,15(8), 991–1011.

    Article  Google Scholar 

  • Singh, V. K., Kumar, D., Kashyap, P. S., & Kisi, O. (2018). Simulation of suspended sediment based on gamma test, heuristic, and regression-based techniques. Environmental Earth Sciences,77(19), 708.

    Article  Google Scholar 

  • Singh, C. K., Shashtri, S., Singh, A., & Mukherjee, S. (2011). Quantitative modeling of groundwater in Satluj River basin of Rupnagar district of Punjab using remote sensing and geographic information system. Environmental Earth Sciences,62(4), 871–881.

    Article  Google Scholar 

  • Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science,240(4857), 1285–1293.

    Article  Google Scholar 

  • Taheri, K., Gutiérrez, F., Mohseni, H., Raeisi, E., & Taheri, M. (2015a). Sinkhole susceptibility mapping using the analytical hierarchy process (AHP) and magnitude–frequency relationships: A case study in Hamadan province, Iran. Geomorphology,234, 64–79.

    Article  Google Scholar 

  • Taheri, K., Taheri, M., & Komail, M. S. (2017). Sin-DRASTIC: A modified vulnerability mapping method for alluvial aquifer hosted by karst in the north of Hamadan Province, west of Iran. In EuroKarst 2016, Neuchâtel (pp. 255–271). Cham: Springer.

  • Taheri, K., Taheri, M., & Parise, M. (2015b). Unprotected karst resources in western Iran: The environmental impacts of intensive agricultural pumping on the covered karstic aquifer, a case in Kermanshah province. In EGU general assembly conference abstracts (Vol. 17).

  • Taheri, K., Taheri, M., & Parise, M. (2016). Impact of intensive groundwater exploitation on an unprotected covered karst aquifer: A case study in Kermanshah Province, western Iran. Environmental Earth Sciences,75(17), 1221.

    Article  Google Scholar 

  • Tahmassebipoor, N., Rahmati, O., Noormohamadi, F., & Lee, S. (2016). Spatial analysis of groundwater potential using weights-of-evidence and evidential belief function models and remote sensing. Arabian Journal of Geosciences,9(1), 79.

    Article  Google Scholar 

  • Thanh, L. N., & De Smedt, F. (2012). Application of an analytical hierarchical process approach for landslide susceptibility mapping in A Luoi district, Thua Thien Hue Province, Vietnam. Environmental Earth Sciences,66(7), 1739–1752.

    Article  Google Scholar 

  • Thirumalaivasan, D., Karmegam, M., & Venugopal, K. (2003). AHP-DRASTIC: Software for specific aquifer vulnerability assessment using DRASTIC model and GIS. Environmental Modelling and Software,18(7), 645–656.

    Article  Google Scholar 

  • Thomas, R., & Duraisamy, V. (2018). Hydrogeological delineation of groundwater vulnerability to droughts in semi-arid areas of western Ahmednagar district. The Egyptian Journal of Remote Sensing and Space Science,21(2), 121–137.

    Article  Google Scholar 

  • Tizro, A. T., Voudouris, K. S., Salehzade, M., & Mashayekhi, H. (2010). Hydrogeological framework and estimation of aquifer hydraulic parameters using geoelectrical data: A case study from West Iran. Hydrogeology Journal,18(4), 917–929.

    Article  Google Scholar 

  • Wada, Y., van Beek, L. P. H., van Kemper, C. M., Reckman, J. W. T. M., Vasak, S., & Bierkens, M. F. P. (2010). Global depletion of groundwater resources. Geophysical Research Letters. https://doi.org/10.1029/2010GL044571.

    Article  Google Scholar 

  • Williams, J. R., & Kissel, D. E. (1991). Water percolation: An indicator of nitrogen-leaching potential. Chapter 4. In R. F. Follett, D. R. Keeney, & R. M. Cruse (Eds.), Managing nitrogen for groundwater quality and farm profitability (pp. 59–83). Madison, WI: Soil Science of America.

    Google Scholar 

  • Yesilnacar, E., & Topal, T. (2005). Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology,79(3), 251–266.

    Article  Google Scholar 

  • Ying, X., Zeng, G. M., Chen, G. Q., Tang, L., Wang, K. L., & Huang, D. Y. (2007). Combining AHP with GIS in synthetic evaluation of eco-environment quality—a case study of Hunan Province, China. Ecological Modelling,209(2), 97–109.

    Article  Google Scholar 

  • Zamin Kav Gostar. (2014). Geophysical study of Kangavar sub-catchment. Code: 2231 (Persian report).

Download references

Acknowledgements

The authors would like to thank Kermanshah Regional Water Authority (KRWA) for providing the data required for this research. We also greatly appreciate the input of Ali Moradi for his valuable comments on bedrock depth configuration. The kind assistance of Dr. Omid Rahmati, Dr. Reza Omidipour, M. Najafi Baiameh, and Mrs. L. Pourdad during the writing of this article is of a great appreciation. Thanks are also due to redrafted and revised many of figures done by Michael Hegy from the Emergent Technologies Institute, Florida Gulf Coast University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Taheri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, K., Missimer, T.M., Taheri, M. et al. Critical Zone Assessments of an Alluvial Aquifer System Using the Multi-influencing Factor (MIF) and Analytical Hierarchy Process (AHP) Models in Western Iran. Nat Resour Res 29, 1163–1191 (2020). https://doi.org/10.1007/s11053-019-09516-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-019-09516-2

Keywords

Navigation