Skip to main content
Log in

Categorization of Mineral Resources Based on Different Geostatistical Simulation Algorithms: A Case Study from an Iron Ore Deposit

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Mineral resource classification plays an important role in the downstream activities of a mining project. Spatial modeling of the grade variability in a deposit directly impacts the evaluation of recovery functions, such as the tonnage, metal quantity and mean grade above cutoffs. The use of geostatistical simulations for this purpose is becoming popular among practitioners because they produce statistical parameters of the sample dataset in cases of global distribution (e.g., histograms) and local distribution (e.g., variograms). Conditional simulations can also be assessed to quantify the uncertainty within the blocks. In this sense, mineral resource classification based on obtained realizations leads to the likely computation of reliable recovery functions, showing the worst and best scenarios. However, applying the proper geostatistical (co)-simulation algorithms is critical in the case of modeling variables with strong cross-correlation structures. In this context, enhanced approaches such as projection pursuit multivariate transforms (PPMTs) are highly desirable. In this paper, the mineral resources in an iron ore deposit are computed and categorized employing the PPMT method, and then, the outputs are compared with conventional (co)-simulation methods for the reproduction of statistical parameters and for the calculation of tonnage at different levels of cutoff grades. The results show that the PPMT outperforms conventional (co)-simulation approaches not only in terms of local and global cross-correlation reproductions between two underlying grades (Fe and Al2O3) in this iron deposit but also in terms of mineral resource categories according to the Joint Ore Reserves Committee standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  • Abildin, Y., Madani, N., & Topal, E. (2019). A hybrid approach for joint simulation of geometallurgical variables with inequality constraint. Minerals, 9(1), 24.

    Article  Google Scholar 

  • Adeli, A., Emery, X., & Dowd, P. (2017). Geological modelling and validation of geological interpretations via simulation and classification of quantitative covariates. Minerals, 8(1), 7.

    Article  Google Scholar 

  • Arik, A. (1999). An alternative approach to ore reserve classification. In APCOM proceedings of the 1999 computer applications in the mineral industries (APCOM) symposium (pp. 45–53).

  • Arik, A. (2002). Comparison of resource classification methodologies with a new approach. In APCOM proceedings of the 2002 application of computers and operations research in the mineral industry (APCOM) symposium (pp 57–64).

  • Barnett, R., Manchuk, J., & Deutsch, C. (2014). Projection pursuit multivariate transform. Mathematical Geosciences, 46(3), 337–359.

    Article  Google Scholar 

  • Barnett, R. M. (2017). Projection pursuit multivariate transform. In J. L. Deutsch (Ed.), Geostatistics lessons. http://www.geostatisticslessons.com/lessons/lineardecorrelation.html. Accessed 24 Oct 2018.

  • Barnett, R. M., Manchuk, J. G., & Deutsch, C. V. (2016). The projection pursuit multivariate transform for improved continuous variable modeling. Society of Petroleum Engineers. https://doi.org/10.2118/184388-pa.

    Article  Google Scholar 

  • Beisiegel, V. D. R., Bernardelli, A. L., Drummond, N. F., Ruff, A. W., & Tremaine, J. W. (1973). Geologia e recursos minerais da Serra dos Carajás. Brazilian Journal of Geology, 3(4), 215–242.

    Google Scholar 

  • Boisvert, J. B., Rossi, M. E., Ehrig, K., & Deutsch, C. V. (2013). Geometallurgical modeling at Olympic dam mine, South Australia. Mathematical Geosciences, 45(8), 1–25.

    Article  Google Scholar 

  • Carr, J. R., & Myers, D. E. (1985). COSIM: A FORTRAN IV program for coconditional simulation. Computers & Geosciences, 11(6), 675–705.

    Article  Google Scholar 

  • Chilès, J. P., & Delfiner, P. (2012). Geostatistics: Modeling spatial uncertainty (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  • Code, J. O. R. C., & Joint Ore Reserves Committee. (2012). The JORC code and guidelines. Australasian code for reporting of exploration results, mineral resources and ore reserves prepared by The Australasian Institute of Mining and Metallurgy (AusIMM), Australian Institute of Geoscientists and Minerals Council of Australia. [Online] Dostępne w: www.jorc.org [Dostęp: 10.07. 2015].

  • David, M. (1977). Geostatistical ore reserve estimation. New York: Elsevier Science Publishing Co.

    Google Scholar 

  • Deutsch, C. (1989). DECLUS: A FORTRAN 77 program for determining optimum spatial declustering weights. Computers & Geosciences, 15(3), 325–332.

    Article  Google Scholar 

  • Deutsch, C. V. (2013). Geostatistical modelling of geometallurgical variables: Problems and solutions. In S. Dominay (Eds.), Proceeding of the second AusIMM international geometallurgy conference (Geomet 2013). Brisbane, Australia.

  • Deutsch, C. V., & Journel, A. G. (1998). Geostatistical software library and user’s guide. New York: Oxford University Press.

    Google Scholar 

  • Deutsch, C. V., Leuangthong, O., & Ortiz J. (2006). A case for geometric criteria in resources and reserves classification. Centre for Computational Geostatistics, report 7, University of Alberta, Edmonton

  • Dimitrakopoulos, R., Godoy, M., & Chou, C. (2009). Resource/reserve classification with integrated geometric and local grade variability measures. In Proceedings orebody modelling and strategic mine planning (pp. 207–214). The Australasian Institute of Mining and Metallurgy, Melbourne.

  • Dohm, C. (2005). Quantifiable mineral resource classification: A logical approach. In O. Leuanthong & C. V. Deutsch (Eds.), Geostatistics Banff 2004 (Vol. 1, pp. 333–342). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Dominy, S. C., Noppé, M. A., & Annels, A. E. (2002). Errors and uncertainty in mineral resource and ore reserve estimation: The importance of getting it right. Exploration and Mining Geology, 11(1–4), 77–98.

    Article  Google Scholar 

  • Duggan, S., & Dimitrakopoulos, R. (2005). Application of conditional simulation to quantify uncertainty and to classify a diamond deflation deposit. In O. Leuangthong & C. Deutsch (Eds.), Geostatistics Banff 2004 (Vol. 2, pp. 419–428). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Emery, X. (2005). Simple and ordinary multigaussian kriging for estimating recoverable reserves. Mathematical Geology, 37(3), 295–319.

    Article  Google Scholar 

  • Emery, X. (2007). Conditioning simulations of Gaussian random fields by ordinary kriging. Mathematical Geology, 39(6), 607–623.

    Article  Google Scholar 

  • Emery, X. (2008). A turning bands program for conditional co-simulation of cross-correlated Gaussian random fields. Computers & Geosciences, 34(12), 1850–1862.

    Article  Google Scholar 

  • Emery, X., & Lantuéjoul, C. (2006). Tbsim: A computer program for conditional simulation of three-dimensional gaussian random fields via the turning bands method. Computers & Geosciences, 32(10), 1615–1628.

    Article  Google Scholar 

  • Emery, X., Ortiz, J. M., & Rodríguez, J. J. (2006). Quantifying uncertainty in mineral resources by use of classification schemes and conditional simulations. Mathematical Geology, 38(4), 445–464.

    Article  Google Scholar 

  • Eze, P. N., Madani, N., & Adoko, A. C. (2019). Multivariate mapping of heavy metals spatial contamination in a Cu–Ni exploration field (Botswana) using turning bands co-simulation algorithm. Natural Resources Researches, 28(1), 109–124. https://doi.org/10.1007/s11053-018-9378-3.

    Article  Google Scholar 

  • Fox, K. A. (2017). The usefulness of NI 43-101 technical reports for financial analysts. Research Policy, 51, 225–233.

    Article  Google Scholar 

  • Friedman, J. H. (1987). Exploratory projection pursuit. Journal of American Statistical Association, 82, 249–266.

    Article  Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press.

    Google Scholar 

  • Gutjahr, A., Bullard, B., & Hatch, S. (1997). General joint conditional simulations using a fast Fourier transform method. Mathematical Geology, 29(3), 361–389.

    Article  Google Scholar 

  • Holdsworth, R. E., & Pinheiro, R. V. (2000). The anatomy of shallow-crustal transpressional structures: Insights from the Archaean Carajás fault zone, Amazon, Brazil. Journal of Structural Geology, 22(8), 1105–1123.

    Article  Google Scholar 

  • Hosseini, S. A., & Asghari, O. (2018). Multivariate geostatistical simulation on block-support in the presence of complex multivariate relationships: Iron ore deposit case study. Natural Resources Researches. https://doi.org/10.1007/s11053-018-9379-2.

    Article  Google Scholar 

  • Journel, A. G., & Huijbregts, C. J. (1978). Mining geostatistics. London: Academic Press.

    Google Scholar 

  • Krige, D. G. (1996). A practical analysis of the effects of spatial structure and of data available and accessed, on conditional biases in ordinary kriging. Geostatistics Wollongong, 96, 799–810.

    Google Scholar 

  • Krige, D. G. (1999). Conditional bias and uncertainty of estimation in geostatistics. In Keynote address for APCOM, 99.

  • Krzemień, A., Fernández, P. R., Sánchez, A. S., & Álvarez, I. D. (2016). Beyond the pan-european standard for reporting of exploration results, mineral resources and reserves. Resources Policy, 49, 81–91.

    Article  Google Scholar 

  • Lantuéjoul, C. (1994). Non conditional simulation of stationary isotropic multigaussian random functions. In M. Armstrong & P. A. Dowd (Eds.), Geostatistical simulations (pp. 147–177). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Lantuéjoul, C. (2002). Geostatistical simulation, models and algorithms (p. 256). Berlin: Springer.

    Book  Google Scholar 

  • Leuangthong, O., & Deutsch, C. V. (2003). Stepwise conditional transformation for simulation of multiple variables. Mathematical Geology, 35(2), 155–173.

    Article  Google Scholar 

  • Madani, N., & Emery, X. (2019). A comparison of search strategies to design the cokriging neighborhood for predicting coregionalized variables. Stochastic Environmental Research and Risk Assessment, 33(1), 183–199. https://doi.org/10.1007/s00477-018-1578-1.

    Article  Google Scholar 

  • Madani, N., & Ortiz, J. (2017). Geostatistical simulation of cross-correlated variables: A case study through Cerro Matoso Nickel-Laterite deposit. In The 26th international symposium on mine planning and equipment selection. Nazarbayev University School of Mining and Geosciences.

  • Maleki, M., & Madani, N. (2017). Multivariate geostatistical analysis: An application to ore body evaluation. Iranian Journal of Earth Sciences, 8, 173–184.

    Google Scholar 

  • Manchuk, J., Leuangthong, O., & Deutsch, C. (2009). The proportional effect. Mathematical Geosciences, 41(7), 799–816.

    Article  Google Scholar 

  • Matheron, G. (1973). The intrinsic random functions and their applications. Advances in Applied Probability, 5(3), 439–468.

    Article  Google Scholar 

  • Meirelles, E. M., Hirata, W. K., Amaral, A. D., Medeiros Filho, C. A., & Gato, W. D. C. (1984). Geologia das folhas Carajás e Rio Verde, Província Mineral de Carajás, Estado do Pará. In Congresso Brasileiro de Geologia, no. 33, Rio de Janeiro, Annals (Vol. 5, pp. 2164–2174).

  • Menin, R., Diedrich, C., Reuwsaat, J. D., & De Paula, W. F. (2017). Drilling grid analysis for defining open-pit and underground mineral resource classification through production data. In J. Gómez-Hernández, J. Rodrigo-Ilarri, M. Rodrigo-Clavero, E. Cassiraga, & J. Vargas-Guzmán (Eds.), Geostatistics valencia (2016). Quantitative geology and geostatistics (Vol. 19). Cham: Springer.

    Google Scholar 

  • Murphy, M., Parker, H., Ross, A., & Audet, M. (2004). Ore-thickness and nickel grade resource confidence at the Koniambo nickel laterite deposit in New Caledonia: A conditional simulation voyage of discovery. In O. Leuangthong & C. Deutsch (Eds.), Geostatistics Banff 2004. Dordrecht: Springer.

    Google Scholar 

  • Mwasinga, P. (2001). Approaching resource classification: General practices and the integration of geostatistics. In Proceedings of the 2001 international symposium on computer applications in the mineral industries (APCOM) (pp. 97–104).

  • Myers, D. E. (1989). Vector conditional simulation. In M. Armstrong (Ed.), Geostatistics (pp. 283–293). Dordrecht: Kluwer Academic.

    Chapter  Google Scholar 

  • Naus, T. (2008). Unbiased LiDAR data measurement (draft). Retrieved September 20, 2018 from http://www.asprs.org/a/society/committees/lidar/Unbiased_measurement.pdf.

  • Paradella, W. R., Ferretti, A., Mura, J. C., Colombo, D., Gama, F. F., Tamburini, A., et al. (2015). Mapping surface deformation in open pit iron mines of Carajás Province (Amazon Region) using an integrated SAR analysis. Engineering Geology, 193, 61–78.

    Article  Google Scholar 

  • Paravarzar, S., Emery, X., & Madani, N. (2015). Comparing sequential Gaussian simulation and turning bands algorithms for cosimulating grades in multi-element deposits. Comptes Rendus Geoscience, 347(2), 84–93.

    Article  Google Scholar 

  • Reed, M., & Simon, B. (1972). Methods of modern mathematical physics: Functional analysis. Resources Policy, 49(2016), 81–91.

    Google Scholar 

  • Rivoirard, J. (1994). Introduction to disjunctive kriging and non-linear geostatistics. Oxford: Clarendon Press.

    Google Scholar 

  • Rivoirard, J., & Renard, D. (2016). A specific volume to measure the spatial sampling of deposits. Mathematical Geosciences, 48(7), 791–809.

    Article  Google Scholar 

  • Rossi, M. E. (2003). Practical aspects of large-scale conditional simulations. In Proceedings of the 31st international symposium on applications of computers and operations research in the mineral industries (APCOM), Cape Town (pp. 14–16).

  • Rossi, M. E., & Deutsch, C. V. (2014). Mineral resource estimation. Berlin: Springer.

    Book  Google Scholar 

  • Sadeghi, B., Madani, N., & Carranza, E. J. M. (2015). Combination of geostatistical simulation and fractal modeling for mineral resource classification. Journal of Geochemical Exploration, 149, 59–73.

    Article  Google Scholar 

  • Silva, D., & Boisvert, J. (2014). Mineral resource classification: A comparison of new and existing techniques. Journal of the Southern African Institute of Mining and Metallurgy, 114, 265–273.

    Google Scholar 

  • Sinclair, A. J., & Blackwell, G. H. (2002). Applied mineral inventory estimation. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Snowden, D. V. (2001). Practical interpretation of mineral resource and ore reserve classification guidelines. In A. C. Edwards (Ed.), Mineral resource and ore reserve estimation—The AusIMM guide to good practice: The Australasian Institute of Mining and Metallurgy, Monograph 23, Melbourne (p. 643–652).

  • Vallée, M. (1999). Resource/reserve inventories: What are the objectives? CIM Bulletin, 92(1031), 151–155.

    Google Scholar 

  • Vallée, M. (2000). Mineral resource + engineering, economic and legal feasibility = ore reserve. CIM Bulletin, 93(1039), 53–61.

    Google Scholar 

  • Wackernagel, H. (2003). Multivariate geostatistics: An introduction with applications (p. 387). Berlin: Springer.

    Book  Google Scholar 

  • Wackernagel, H. (2013). Multivariate geostatistics: An introduction with applications. Berlin: Springer.

    Google Scholar 

  • Wawruch, T. M., & Betzhold, J. F. (2005). Mineral resource classification through conditional simulation. In Geostatistics Banff 2004 (pp. 479–489). Springer

  • Wilde, B. (2010). Programs for data spacing, uncertainty, and classification. CCG annual report 12, paper 403.

  • Yamamoto, J. K. (2000). An alternative measure of the reliability of ordinary kriging estimates. Mathematical Geology, 32(4), 489–509.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Nazarbayev University for funding this work via “Faculty Development Competitive Research Grants for 2018–2020 under Contract No. 090118FD5336.” The second author acknowledges the Social Policy Grant (SPG) supported by Nazarbayev University. The authors also thank the Geovariances Company for providing the dataset. We are also grateful to Dr. John Carranza and the reviewers for their valuable comments, which substantially helped improving the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Madani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battalgazy, N., Madani, N. Categorization of Mineral Resources Based on Different Geostatistical Simulation Algorithms: A Case Study from an Iron Ore Deposit. Nat Resour Res 28, 1329–1351 (2019). https://doi.org/10.1007/s11053-019-09474-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-019-09474-9

Keywords

Navigation