Skip to main content
Log in

A comparative study on the performance of hybrid solar cells containing ZnSTe QDs in hole transporting layer and photoactive layer

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this paper, ZnSTe quantum dots-based hybrid solar cells (HSC) with two different device architectures have been investigated. The improved performance of the poly(3-hexylthiophene) (P3HT) and [6,6]phenyl C71 butyric acid methyl ester (PC71BM)-based bulk heterojunction (BHJ) solar cells by the incorporation of ZnSTe quantum dots (QDs) with an average size of 2.96 nm in PEDOT:PSS layer and active layer that have been demonstrated. Although the efficiency of both types of devices is almost the same, a close comparison reveals different reasons behind their improved performance. The device prepared with QDs in the HTL has shown reduced series resistance, increased shunt resistance, and improved mobility. On the other hand, QDs in the photoactive layer demonstrates increased photo-generation leading to improved efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adachi S (2009) Properties of semiconductor alloys: group-IV, III-V and II-VI semiconductors, vol 28. John Wiley & Sons

  • Braga A, Giménez S, Concina I, Vomiero A, Mora-Seró I (2011) Panchromatic sensitized solar cells based on metal sulfide quantum dots grown directly on nanostructured TiO2 electrodes. The Journal of Physical Chemistry Letters 2(5):454–460

    Article  Google Scholar 

  • Carey GH, Abdelhady AL, Ning Z, Thon SM, Bakr OM, Sargent EH (2015) Colloidal quantum dot solar cells. Chem Rev 115(23):12732–12763

    Article  Google Scholar 

  • Chang JA, Im SH, Lee YH et al (2012) Panchromatic photon-harvesting by hole-conducting materials in inorganic–organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels. Nano Lett 12(4):1863–1867

    Article  Google Scholar 

  • Chen L-M, Xu Z, Hong Z, Yang Y (2010) Interface investigation and engineering–achieving high performance polymer photovoltaic devices. J Mater Chem 20(13):2575–2598

    Article  Google Scholar 

  • Chiguvare Z, Parisi J, Dyakonov V (2003) Current limiting mechanisms in indium-tin-oxide/poly3-hexylthiophene/aluminum thin film devices. J Appl Phys 94:2440–2448

    Article  Google Scholar 

  • Fan C, Zhang Q, Zhu X, Zhuang X, Pan A (2015) Photoluminescence and surface photovoltage properties of ZnSe nanoribbons. Science Bulletin 60(19):1674–1679

    Article  Google Scholar 

  • Farag A, Yahia I, Wojtowicz T, Karczewski G (2010) Influence of temperature and illumination on the electrical properties of p-ZnTe/n-CdTe heterojunction grown by molecular beam epitaxy. J Phys D Appl Phys 43:215102

    Article  Google Scholar 

  • González-Pedro V, Xu X, Mora-Sero I, Bisquert J (2010) Modeling high-efficiency quantum dot sensitized solar cells. ACS Nano 4(10):5783–5790

    Article  Google Scholar 

  • Guinier A (1963) X-ray diffraction. W. H. Freeman, San Francisco, CA, USA

    Google Scholar 

  • Janotti A, Van de Walle CG (2009) Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys 72(12):126501

    Article  Google Scholar 

  • Khrebtov A, Talalaev V, Werner P et al (2013) Composite system based on CdSe/ZnS quantum dots and GaAs nanowires. Semiconductors 47(10):1346–1350

    Article  Google Scholar 

  • Mora-Sero I, Gimenez S, Fabregat-Santiago F et al (2009) Recombination in quantum dot sensitized solar cells. Acc Chem Res 42(11):1848–1857

    Article  Google Scholar 

  • Najeeb MA, Abdullah SM, Aziz F et al (2016a) Structural, morphological and optical properties of PEDOT: PSS/QDs nano-composite films prepared by spin-casting. Physica E: Low-dimensional Systems and Nanostructures 83:64–68

    Article  Google Scholar 

  • Najeeb MA, Abdullah SM, Aziz F et al (2016b) Improvement in the photovoltaic properties of hybrid solar cells by incorporating a QD-composite in the hole transport layer. RSC Adv 6(27):23048–23057

    Article  Google Scholar 

  • Ocak YS, Kulakci M, Kılıçoğlu T, Turan R, Akkılıç K (2009) Current–voltage and capacitance–voltage characteristics of a Sn/Methylene Blue/p-Si Schottky diode. Synth Met 159:1603–1607

    Article  Google Scholar 

  • Roy M, Balraju P, Deol Y, Mishra R, Choudhary V, Sharma G (2008) Charge transportation and photo generation process in polythiophene functionalized with tin (II) phthalocyanine (SnPc-PT) thin film. Sol Energy Mater Sol Cells 92:1516–1525

    Article  Google Scholar 

  • Schweizer TM (2005) Electrical characterization and investigation of the piezoresistive effect of PEDOT: PSS thin films

  • Sonawane KG, Rajesh C, Temgire M, Mahamuni S (2011) A case study: Te in ZnSe and Mn-doped ZnSe quantum dots. Nanotechnology 22(30):305702

    Article  Google Scholar 

  • Sou IK, Man CL, Ma ZH, Yang Z, Wong GKL (1997) High performance ZnSTe photovoltaic visible-blind ultraviolet detectors. Appl Phys Lett 71(26):3847–3849

    Article  Google Scholar 

  • Sou IK, Man CL, Ma ZH, Yang Z, Wong GKL (1998) ZnSTe-based visible-blind UV photovoltaic detectors. J Cryst Growth 184:1324–1329

    Article  Google Scholar 

  • Sou IK, Wong KS, Yang ZY, Wang H, Wong GKL (1995) Highly efficient light emission from ZnS1−xTex alloys. Appl Phys Lett 66(15):1915–1917

    Article  Google Scholar 

  • Sou IK, Yang Z, Mao J et al (1996) Aluminum-doped n-type ZnSTe alloy grown by molecular beam epitaxy. Appl Phys Lett 69(17):2519–2521

    Article  Google Scholar 

  • Thompson BC, Frechet JM (2008) Polymer–fullerene composite solar cells. Angew Chem Int Ed 47(1):58–77

    Article  Google Scholar 

  • Toyoda T, Shen Q (2012) Quantum-dot-sensitized solar cells: effect of nanostructured TiO2 morphologies on photovoltaic properties. The Journal of Physical Chemistry Letters 3(14):1885–1893

    Article  Google Scholar 

  • Wageh S (2016) Ternary ZnS: Te nanoparticles capped with 3-mercaptopropionic acid prepared in aqueous media. J Mater Sci Mater Electron 27(10):10877–10887

    Article  Google Scholar 

  • Wang H, Wong KS, Sou IK, Wong GKL (1995) Room-temperature deep-blue stimulated emission in ZnS/ZnSe and ZnSTe/ZnSe strained layer superlattices. Appl Phys Lett 66(23):3140–3142

    Article  Google Scholar 

  • Wang L-D, Zhang T, Zhu S-Q et al (2012) Two-dimensional ultrathin gold film composed of steadily linked dense nanoparticle with surface plasmon resonance. Nanoscale Res Lett 7(1):1

    Article  Google Scholar 

  • Wright M, Uddin A (2012) Organic—inorganic hybrid solar cells: a comparative review. Sol Energy Mater Sol Cells 107:87–111

    Article  Google Scholar 

  • Yu Y-M, Nam S, Rhee J-K, Byungsung O, Lee K-S, Choi Y (2000) Characterization and growth of ZnSTe epilayers by hot-wall epitaxy. J Cryst Growth 210(4):521–526

    Article  Google Scholar 

  • Zhao D, Li J-T, Gao F, C-l Z, He Z-k (2014) Facile synthesis and characterization of highly luminescent UV-blue-emitting ZnSe/ZnS quantum dots via a one-step hydrothermal method. RSC Adv 4(87):47005–47011

    Article  Google Scholar 

  • Zhao Z, Wu Q, Xia F et al (2015) Improving the conductivity of PEDOT: PSS hole transport layer in polymer solar cells via copper (II) bromide salt doping. ACS Appl Mater Interfaces 7(3):1439–1448

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zubair Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najeeb, M.A., Abdullah, S.M., Aziz, F. et al. A comparative study on the performance of hybrid solar cells containing ZnSTe QDs in hole transporting layer and photoactive layer. J Nanopart Res 18, 384 (2016). https://doi.org/10.1007/s11051-016-3694-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3694-5

Keywords

Navigation