Skip to main content

Advertisement

Log in

Plasmonic effects in composite metal nanostructures for sensing applications

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We have investigated numerically the plasmonic effect on a two-dimensional periodic array of metallic nanostructures. The unit cell of the array has an Ag nanosphere and nanorod pair formed in a single structure. Three-dimensional finite element method is used for the study on the sensing performance within the optical spectra. The study takes into account the influences of the structural and material parameters, the rotational angle of the metal nanostructure, the number of metal nanostructure per unit cell, and the localized surface plasmon resonances. The proposed nanostructures function as a refractive index sensor with a sensitivity of 400 nm/RIU (RIU is the refractive index unit), showing the characteristics of low transmittance (T = 3.90%), high absorptance (A = 94.5%), and near-zero reflectance (R = 0.15%), could be achieved by a triangular arrangement of nanostructures within a unit cell. We also show how the tailoring of the structural parameters relates to the specific sensing schematics of the sensor.

x-y sectional plane of electric field intensity, electric force lines (pink lines), energy flows (green arrows) and surface charge density of type 2, corresponding to the surrounding testing medium of (a) n=1.00 and (b) n=1.33 around the PMNSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aizpurua J, Bryant GW, Richter LJ, Abajo FJGD, Kelley BK, Mallouk T (2005) Optical properties of coupled nanoscale metallic rods for field-enhanced spectroscopy. Phys Rev B 71:235420

    Article  Google Scholar 

  • Angelis FD, Malerba M, Patrini M, Miele E, Das G, Toma A, Zaccaria RP, Fabrizio ED (2013) 3D hollow nanostructures as building blocks for multifunctional plasmonics. Nano Lett 13:3553–3558

    Article  Google Scholar 

  • Brian GMM, Berlouis LEA, Cruickshank FR, Pugh D, Brevet P-F (2005) Transverse and longitudinal surface plasmon resonances of a hexagonal array of gold nanorods embedded in an alumina matrix. Appl Phys Lett 86:211912

    Article  Google Scholar 

  • Cai L, Li G, Xiao F, Wang Z, Xu A (2010) Theory of enhanced optical transmission through a metallic nano-slit surrounded with asymmetric grooves under oblique incidence. Opt Express 18:19495–19503

    Article  Google Scholar 

  • Chau YF (2009) Surface plasmon effects excited by the dielectric hole in a silver-Shell Nanospherical pair. Plasmonics 4:253–259

    Article  Google Scholar 

  • Chau YF, Yeh HH, Tsai DP (2010) Surface plasmon resonances effects on different patterns of solid-silver and silver-shell nanocylindrical pairs. J Electromagn Waves Appl 24:1005–1014

    Article  Google Scholar 

  • Chau YF, Yeh HH (2011) A comparative study of solid-silver and silver-shell nanodimers on surface plasmon resonances. J Nanopart Res 13:637–644

    Article  Google Scholar 

  • Chau YF, Jiang ZH (2011) Plasmonics effects of nanometal embedded in a dielectric substrate. Plasmonics 6:581–589

    Article  Google Scholar 

  • Chau YF, Jheng CY, Joe SF, Wang SF, Yang W, Jheng SC, Sun YS, Chu Y, Wei JH (2013) Structurally and materially sensitive hybrid surface plasmon modes in periodic silver-shell nanopearl and its dimer arrays. J Nanopart Res 15:1424

    Article  Google Scholar 

  • Chau YF, Yeh HH, Tsai DP (2009) Surface plasmon effects excitation from three-pair arrays of silver-shell nanocylinders. Phys Plasmas 16:022303

    Article  Google Scholar 

  • Chiang HP, Lin JL, Chen ZW (2006) High sensitivity surface plasmon resonance sensor based on phase interrogation at optimal incident wavelengths. App Phys Lett 88:141105

    Article  Google Scholar 

  • Chen MW, Chau YF, Tsai DP (2008) Three-dimensional analysis of scattering field interactions and surface plasmon resonance in coupled silver nanospheres. Plasmonics 3:157–164

    Article  Google Scholar 

  • Chou Chau YF, Lim CM, Lee C, Huang HJ, Lin CT, Kumara NTRN, Voo NY, Chiang HP (2016c) Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod. J Appl Phys 120:093110

    Article  Google Scholar 

  • Chou Chau YF, Chou Chao CT, Rao JY, Chiang HP, Lim CM, Lim RC, Voo NY (2016a) Tunable optical performances on a periodic array of plasmonic bowtie nanoantennas with hollow cavities. Nanoscale Res Lett 11: 411

  • Chou Chau YF, Jiang JC, Chao C, CT Chiang HP, Lim CM (2016b) Manipulating near field enhancement and optical spectrum in a pair-array of the cavity resonance based plasmonic nanoantennas. J Phys D Appl Phys 49:475102

    Article  Google Scholar 

  • Chou Chau YF, Wang CK, Shen LF, Lim CM, Chiang HP, Chou Chao CT, Huang HJ, Lin CT, Kumara NTRN, Voo NY (2017) Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays. Sci Rep 7:16871

    Article  Google Scholar 

  • Chu HO, Song S, Li C, Gibson D (2017) Surface enhanced Raman scattering substrates made by oblique angle deposition: methods and applications. Coatings 7:26

    Article  Google Scholar 

  • Chung T, Koker T, Pinaud F (2017) Gold nanorod/nanosphere clustering by split-GFP fragment assembly for tunable nearinfrared SERS detections. Opt Mater Express 7:3270–3283

    Article  Google Scholar 

  • Chung HY, Chen CC, Wu PC, Tseng ML, Lin WC, Chen CW, Chiang HP (2014) Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using blique deposited silver nanorods. Nanoscale Res Lett 9:476

    Article  Google Scholar 

  • Gresho PM, Sani RL (2000) Incompressible flow and finite element method, vol 1, 2. Wiley, New York

  • Hairer E, Lubich C, Wanner G (2006) Geometric Numerical Integration, Springer, Berlin

  • Ho YZ, Chen WT, Huang YW, Wu PC, Tseng ML, Wang YT, Chau YF, Tsai DP (2012) Tunable plasmonic resonance arising from broken-symmetric silver nanobeads with dielectric cores. J Opt 14:114010

    Article  Google Scholar 

  • Horprathum M, Eiamchai Kaewkhao P, Chananonnawathorn J, Patthanasettakul CV, Limwichean S, Nuntawong N, Chindaudom P (2014) Fabrication of nanostructure by physical vapor deposition with glancing angle deposition technique and its applications. AIP Conference Proceedings 1617:7

    Article  Google Scholar 

  • Hu CC, Yang W, Tsai YT, Chau YF (2014) Gap enhancement and transmittance spectra of a periodic bowtie nanoantenna array buried in a silica substrate. Opt Commun 2014(324):227–233

  • Huang HJ, Liu BH, Su J, Chen PJ, Lin CT, Chiang HP, Kao TS, Chau YF, Kei CC, Hwang CH (2017) Light energy transformation over a few nanometers. J Phys D Appl Phys 50:375601

    Article  Google Scholar 

  • Jen YJ, Liu WC, Chao JH, Huang JW, Chang YT (2014b) Strong light coupling effect for a glancing-deposited silver. Nanoscale Res Lett 9:567

    Article  Google Scholar 

  • Jen YJ, Lin MJ, Chau YF, Jheng CY (2014a) Deposition of Ta2O5 upon silver nanorods as an ultra-thin light absorber. Thin Solid Films 567:38–46

    Article  Google Scholar 

  • Jeong HH, Mark AG, Alarco’n-Correa M, Kim I, Oswald P, Lee TC, Fischer P (2016) Dispersion and shape engineered plasmonic nanosensors. Nat Commun 7:11331

    Article  Google Scholar 

  • Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  Google Scholar 

  • Ju J, Byeon E, Han YA, Kim SM (2013) Fabrication of a substrate for Ag-nanorod metal-enhanced fluorescence using the oblique angle deposition process. Micro Nano Lett 8:370–373

    Article  Google Scholar 

  • Kesapragada SV, Gall D (2006) Anisotropic broadening of Cu nanorods during glancing angle deposition. Appl Phys Lett 89:203121

    Article  Google Scholar 

  • Kumara NTRN, Chou Chau CC, Huang JW, Huang HJ, Lin CT, Chiang HP (2016) Plasmonic spectrum on 1D and 2D periodic arrays of rod-shape metal nanoparticle pairs with different core patterns for biosensor and solar cell applications. J Opt 18:115003

    Article  Google Scholar 

  • Kwon MS, Ku B, Kim Y (2016) Plasmofluidic disk resonators. Sci Rep 6:23149

    Article  Google Scholar 

  • Lai CH, Wang GA, Ling TK, Wang TJ, Chiu PK, Chou Chau YF, Huang CC, Chiang HP (2017) Near infrared surface-enhanced Raman scattering based on starshaped gold/silver nanoparticles and hyperbolic metamaterial. Sci Rep 7:5446

    Article  Google Scholar 

  • Langer J, Novikov SM, Liz-Marzán LM (2015) Sensing using plasmonic nanostructures and nanoparticles. Nanotechnology 26:322001

    Article  Google Scholar 

  • Li YF (2015) Broadband unidirectional cloaks based on flat metasurface focusing lenses. J Phys D Appl Phys 48:335101

    Article  Google Scholar 

  • Li X, Zhu J, Wei B (2016) Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chem Soc Rev 45:3145–3187

    Article  Google Scholar 

  • Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10:2342–2348

    Article  Google Scholar 

  • Lu X, Zhang L, Zhang T (2015) Nanoslit-microcavity-based narrow band absorber for sensing applications. Opt Express 23:20715–20720

    Article  Google Scholar 

  • Miyamaru F, Morita H, Nishiyama Y, Nishida T, Nakanishi T, Kitano M, Takeda MW (2014) Ultrafast optical control of group delay of narrow-band terahertz waves. Sci Rep 4:4346

    Article  Google Scholar 

  • Murai S, Sakamoto H, Fujita K, Tanaka K (2016) Mesoporous silica layer on plasmonic array: light trapping in a layer with a variable index of refraction. Opt Mater Express 6:2736–2744

    Article  Google Scholar 

  • Sánchez-Dena O et al (2013) Size- and shape-dependent nonlinear optical response of Au nanoparticles embedded in sapphire. Opt Mater Express 4:92–100

    Article  Google Scholar 

  • Shen Y, Zhou J, Liu T, Tao Y, Jiang R, Liu M, Xiao G, Zhu J, Zhou ZK, Wang X, Jin C, Wang J (2013) Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 4:2381

    Article  Google Scholar 

  • Su LC, Chen RC, Li YC, Chang YF, Lee YJ, Lee CC, Chou C (2010) Detection of prostate-specific antigen with a paired surface. Plasma wave biosensor. Anal Chem 82:3714–3718

    Article  Google Scholar 

  • Tsuji M, Gomi S, Maeda Y, Matsunaga M, Hikino S, Uto K, Tsuji T, Kawazumi H (2012) Rapid transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of silver with PVP, citrate, and H2O2. Langmuir 28:8845–8861

    Article  Google Scholar 

  • Wei G, Wang J, Chen Y (2015) Electromagnetic enhancement of ordered silver nanorod arrays evaluated by discrete dipole approximation. Beilstein J Nanotechnol 6:686–696

    Article  Google Scholar 

  • Wu D, Liu Y, Yu L, Yu Z, Chen L, Li R, Ma R, Liu C, Zhang J, Ye H (2017) Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor. Sci Rep 7:45210

    Article  Google Scholar 

  • Xu X, Yang Q, Wattanatorn N, Zhao C, Chiang N, Jonas SJ, Paul SW (2017) Multiple-patterning nanosphere lithography for fabricating periodic three-dimensional hierarchical nanostructures. ACS Nano11: 10384–10391

  • Yang Y, Hu Z, Wang Y, Wang B, Zhan Q, Zhang Y, Ao X (2016) Broadband SERS substrates by oblique angle deposition method. Opt Mater Express 6:2644–2654

    Article  Google Scholar 

  • Yang W, Chou Chau YF, Jheng SC (2013) Analysis of transmittance properties of surface plasmon modes on periodic solid/outline bowtie nanoantenna arrays. Phys Plasmas 20:064503

    Article  Google Scholar 

  • Zhao J, Cao S, Liao C, Wang Y, Wang G, Xu X, Fu C, Xu G, JLian J, Wang Y (2016) Surface plasmon resonance refractive sensor based on silver-coatedside-polished fiber. Sensors Actuators B 230:206–211

    Article  Google Scholar 

  • Zhu J, Zhang F, Li JJ, Zhao JW (2014) The effect of nonhomogeneous silver coating on the plasmonic absorption of au–ag core–shell nanorod. Gold Bull 47:47–55

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the University Research Grant of Universiti Brunei Darussalam (grant no. UBD/OAVCRI/CRGWG (004)/170101) and Ministry of Science and Technology of Taiwan (MOST 106-2112-M-019-005-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Pang Chiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chau, YF.C., Chao, CT.C., Chiang, HP. et al. Plasmonic effects in composite metal nanostructures for sensing applications. J Nanopart Res 20, 190 (2018). https://doi.org/10.1007/s11051-018-4293-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4293-4

Keywords

Navigation