Skip to main content
Log in

Surface Plasmon Effects Excited by the Dielectric Hole in a Silver-Shell Nanospherical Pair

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Using the finite-element method, the surface plasmon effects in a three-dimensional silver-shell nanospherical pair with five different dielectric holes (DHs) that interact with a transverse magnetic mode incident plane wave are investigated. The proposed structure exhibits a red-shifted localized surface plasmon that can be tuned over an extended wavelength range by varying the dielectric constant and the radii in DHs. The increase in the near-field intensity is attributed to a larger effective size of DH that is filled with a higher refractive index medium. The predictive character of these calculations allows one to tailor the shape of the nanoparticle to achieve excitation spectra on demand with a controlled field enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5:829–834

    Article  CAS  Google Scholar 

  2. Haes AJ, Zou S, Schatz GC, Van Duyne RP (2004) Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 108:6961–6968

    Article  CAS  Google Scholar 

  3. Loo CA, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711

    Article  CAS  Google Scholar 

  4. Fischer H, Martin OJF (2008) Engineering the optical response of plasmonic nanoantennas. Opt Expr 16:9144–9154

    Article  Google Scholar 

  5. Kottmann J, Martin OJF (2001) Plasmon resonant coupling in metallic nanowires. Opt Expr 8:655–663

    Article  CAS  Google Scholar 

  6. Paulus M, Martin O (2001) Scattering experiments with a diving cylinder. Opt Exp 9:303–311

    Article  CAS  Google Scholar 

  7. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  8. Nehl CL, Liao H, Hafner JH (2006) Optical properties of star-shaped gold nanoparticles. Nano Lett 6:683–688

    Article  CAS  Google Scholar 

  9. Oldenburg SJ, Averitt RD, Westcott SL, Halas N (1998) Nanoengineering of optical resonances. J Chem Phys Lett 288:243–247

    Article  CAS  Google Scholar 

  10. Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ (2005) Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 5:1569–1574

    Article  CAS  Google Scholar 

  11. Sherry LJ, Chang S-H, Schatz GC, Duyne RPV, Wiley BJ, Xia Y (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038

    Article  CAS  Google Scholar 

  12. Oldenburg SJ, Averitt RD, Westcoot SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288:243–247

    Article  CAS  Google Scholar 

  13. Britt Lassiter J et al (2008) Nanoshells dimers and overlapped dimmers. Nano Lett 8:1212–1218

    Article  Google Scholar 

  14. Jain PK, El-Sayed MA (2007) Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells. Nano Lett 7:2854–2858

    Article  CAS  Google Scholar 

  15. Prodan E, Nordlander P, Halas NJ (2003) Electronic structure and optical properties of gold nanoshells. Nano Lett 3:1411–1415

    Article  CAS  Google Scholar 

  16. Jackson JB, Westcott SL, Hirsch LR, West JL, Halas NJ (2003) Controlling the surface enhanced Raman effect via the nanoshell geometry. Appl Phys Lett 82:257–259

    Article  CAS  Google Scholar 

  17. Urzhumov YA, Shvets G, Fan J, Capasso F, Brandl D, Nordlander P (2007) Plasmonic nanoclusters: a path towards negative-index metafluids. Opt Expr 15:14129–14245

    Article  Google Scholar 

  18. Lévêque G, Martin OJF (2006) Optical interactions in a plasmonic particle coupled to a metallic film. Opt Expr 14:9971–9981

    Article  Google Scholar 

  19. Gaëtan, Lévêque, Martin OJF (2006) Tunable composite nanoparticle for plasmonics. Opt Lett 31:2750-2752

    Google Scholar 

  20. Holger Fischer, Martin OJF (2009) Retardation-induced plasmonic blinking in coupled nanoparticles. Opt Lett 34:368-370

  21. Kern AM, Martin OJF (2009) Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures. JOSA A 26:732–740

    Article  Google Scholar 

  22. Gresho PM, Sani RL (2000) Incompressible Flow and Finite Element Method, Volum1 & 2. Wiley, New York

    Google Scholar 

  23. COMSOL Multiphysics TM, http://www.comsol.com.

  24. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  25. Okamoto T (2001) In Kawata S (Ed) Near-Field Optics and Surface Plasmon Polaritons. Springer, Berlin, p 99.

  26. Chau Y-F, Tsai DP (2007) Three-dimensional analysis of silver nano-particles doping effects on super resolution near-field structure. Opt Commun 269:389–394

    Article  CAS  Google Scholar 

  27. Chen Y, Wang Y, Zhang Y, Liu S (2008) Numerical investigation of the transmission enhancement through subwavelength hole array. Opt Commun 274:236–240

    Article  Google Scholar 

  28. Bohren CF, Huffman DR (1983) Absorption and Scattering of Light by Small Particles. Wiley, New York

    Google Scholar 

  29. Ruan Z, Qiu M (2006) Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Phys Rev Lett 96:233901

    Article  Google Scholar 

  30. Cao Q, Lalanne P (2002) Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys Rev Lett 88:057403

    Article  Google Scholar 

  31. van der Molen KL, Segerink FB, van Hulst NF, Kuipers L (2004) Influence of hole size on the extraordinary transmission through subwavelength hole arrays. Appl Phys Lett 85:4316–4318

    Article  Google Scholar 

  32. Chau Y-F, Yeh H-H, Tsai DP (2008) Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair. Appl Opt 47:5557–5561

    Article  CAS  Google Scholar 

  33. Mirin NA, Halas NJ (2009) Light-bending nanoparticles. Nano Lett 9:1255–1259. doi:10.1021/nl900208z

    Article  CAS  Google Scholar 

  34. Wang H, Halas NJ (2006) Plasmonic nanoparticle heterodimers in a semiembedded geometry fabricated by stepwise upright assembly. Nano Lett 6:2945–2948. doi:10.1021/nl062346z

    Article  CAS  Google Scholar 

  35. Wang H, Brandl DW, Le F, Nordlander P, Halas NJ (2006) Nanorice: a hybrid plasmonic nanostructure. Nano Lett 6:827–832. doi:10.1021/nl060209w

    Article  CAS  Google Scholar 

  36. Slocik JM, Tam F, Halas NJ, Naik RR (2007) Scattering spectra of single gold nanoshells. Nano Lett 7:1054–1058. doi:10.1021/nl070267x

    Article  CAS  Google Scholar 

  37. Ow H, Larson DR, Srivastava M, Baird BA, Webb WW, Wiesner U (2005) Bright and stable core—shell fluorescent silica nanoparticles. Nano Lett 5:113–117. doi:10.1021/nl0482478

    Article  CAS  Google Scholar 

  38. Radloff C, Halas NJ (2004) Plasmonic properties of concentric nanoshells. Nano Lett 7:1323–1327. doi:10.1021/nl049597x

    Article  Google Scholar 

Download references

Acknowledgements

The author is thankful for the financial support from National Science Council, Taiwan, ROC, under Grant number NSC 96-2112-M-231-001-MY3 and NSC-97-2120-M-002-013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Fong Chau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chau, YF. Surface Plasmon Effects Excited by the Dielectric Hole in a Silver-Shell Nanospherical Pair. Plasmonics 4, 253–259 (2009). https://doi.org/10.1007/s11468-009-9100-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-009-9100-8

Keywords

Navigation