Skip to main content
Log in

MRI based on iron oxide nanoparticles contrast agents: effect of oxidation state and architecture

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Iron oxide nanoparticles (IONPs) extensively employed beyond regenerative medicines to imaging disciplines because of their great constituents for magneto-responsive nano-systems. The unique superparamagnetic behavior makes IONPs very suitable for hyperthermia and imaging applications. From the last decade, versatile functionalization with surface capabilities, efficient contrast properties and biocompatibilities make IONPs an essential imaging contrast agent for magnetic resonance imaging (MRI). IONPs have shown signals for both longitudinal relaxation and transverse relaxation; therefore, negative contrast as well as dual contrast can be used for imaging in MRI. In the current review, we have focused on different oxidation state of iron oxides, i.e., magnetite, maghemite and hematite for their T1 and T2 contrast enhancement properties. We have also discussed different factors (synthesis protocols, biocompatibility, toxicity, architecture, etc.) that can affect the contrast properties of the IONPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aggarwal P, Hall JB et al (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61(6):428–437

    Article  Google Scholar 

  • Albornoz C, Sileo EE et al (2004) Magnetic polymers of maghemite (γ-Fe2O3) and polyvinyl alcohol. Phys B Condens Matter 354(1):149–153

    Article  Google Scholar 

  • Alexiou C, Jurgons R et al (2006) Medical applications of magnetic nanoparticles. J Nanosci Nanotechnol 6(9-10):2762–2768

    Article  Google Scholar 

  • Arshad M, Siddiqui HA et al (2016) Synthesis of iron oxide magnetic nanoparticle by sol-gel method and their characterization. Professor Dr. Muhammad Tufail Convener 98:98

  • Azhdarzadeh M, Atyabi F et al (2016) Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids Surf B Biointerfaces 143:224–232

    Article  Google Scholar 

  • Ba-Abbad MM, Takriff MS et al (2017) Size and shape controlled of α-Fe2O3 nanoparticles prepared via sol–gel technique and their photocatalytic activity. J Sol-Gel Sci Technol 81(3):880–893

    Article  Google Scholar 

  • Baaziz W, Pichon BP et al (2014) Magnetic iron oxide nanoparticles: reproducible tuning of the size and nanosized-dependent composition, defects, and spin canting. J Phys Chem C 118(7):3795–3810

    Article  Google Scholar 

  • Bae KH, Kim YB et al (2010) Bioinspired synthesis and characterization of gadolinium-labeled magnetite nanoparticles for dual contrast T 1-and T 2-weighted magnetic resonance imaging. Bioconjug Chem 21(3):505–512

    Article  Google Scholar 

  • Bagwe R, Kanicky J et al (2001) Improved drug delivery using microemulsions: rationale, recent progress, and new horizons. Crit Rev Ther Drug Carrier Syst 18(1):77

    Google Scholar 

  • Basak S, Chen D-R et al (2007) Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: modified scaling law. Chem Eng Sci 62(4):1263–1268

    Article  Google Scholar 

  • Bashir M, Riaz S et al (2014) Magnetic Properties of Fe 3 O 4 Stabilized Zirconia. IEEE Trans Magn 50(8):1–4

    Article  Google Scholar 

  • Basti H, Tahar LB et al (2010) Catechol derivatives-coated Fe 3 O 4 and γ-Fe 2 O 3 nanoparticles as potential MRI contrast agents. J Colloid Interface Sci 341(2):248–254

    Article  Google Scholar 

  • Beg MS, Mohapatra J et al (2017) Porous Fe 3 O 4-SiO 2 core-shell nanorods as high-performance MRI contrast agent and drug delivery vehicle. J Magn Magn Mater 428:340–347

    Article  Google Scholar 

  • Bermudez E, Mangum JB et al (2004) Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77(2):347–357

    Article  Google Scholar 

  • Bhavani P, Rajababu C et al (2016) Synthesis and characterization of iron oxide nanoparticles prepared hydrothermally at different reaction temperatures and pH. Int J Mater Res 107(10):942–947

    Article  Google Scholar 

  • Bhosale RR, Kumar A et al (2016) Propylene oxide assisted sol–gel synthesis of zinc ferrite nanoparticles for solar fuel production. Ceram Int 42(2):2431–2438

    Article  Google Scholar 

  • Bhosale RR, Shende RV et al (2012) Sol-gel derived NiFe 2 O 4 modified with ZrO 2 for hydrogen generation from solar thermochemical water-splitting reaction. MRS Online Proceedings Library Archive:1387

  • Blanco-Andujar C, Walter A et al (2016) Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Nanomedicine 11(14):1889–1910

    Article  Google Scholar 

  • Bomati-Miguel O, Miguel-Sancho N et al (2014) Ex vivo assessment of polyol coated-iron oxide nanoparticles for MRI diagnosis applications: toxicological and MRI contrast enhancement effects. J Nanopart Res 16(3):1–13

    Article  Google Scholar 

  • Bomatí-Miguel O, Morales MP et al (2005) Fe-based nanoparticulate metallic alloys as contrast agents for magnetic resonance imaging. Biomaterials 26(28):5695–5703

    Article  Google Scholar 

  • Bondarenko O, Juganson K et al (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87(7):1181–1200

    Article  Google Scholar 

  • Brahma P, Banerjee S et al (2002) Properties of nanocomposites of α-Fe and Fe 3 O 4. J Magn Magn Mater 246(1):162–168

    Article  Google Scholar 

  • Brooks RA, Moiny F et al (2001) On T2-shortening by weakly magnetized particles: the chemical exchange model. Magn Reson Med 45(6):1014–1020

    Article  Google Scholar 

  • Brunner TJ, Wick P et al (2006) vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40(14):4374–4381

  • Bucci OM, Crocco L et al (2015) On the optimal measurement configuration for magnetic nanoparticles-enhanced breast cancer microwave imaging. IEEE Trans Biomed Eng 62(2):407–414

    Article  Google Scholar 

  • Budde MD, Frank JA (2009) Magnetic tagging of therapeutic cells for MRI. J Nucl Med 50(2):171–174

    Article  Google Scholar 

  • Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17(7):484–499

    Article  Google Scholar 

  • Cedervall T, Lynch I et al (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci 104(7):2050–2055

    Article  Google Scholar 

  • Chamundeeswari M, Sastry T et al (2013) Iron nanoparticles from animal blood for cellular imaging and targeted delivery for cancer treatment. Biochim Biophys Acta Gen Subj 1830(4):3005–3010

    Article  Google Scholar 

  • Chatterjee S, Sarkar K (2013) A computational and mathematical approach towards the design and synthesis of uniform Au seed decorated Fe 3 O 4 nanoparticle for potential bio-application. Procedia Technol 10:457–463

    Article  Google Scholar 

  • Chen D-H, He X-R (2001) Synthesis of nickel ferrite nanoparticles by sol-gel method. Mater Res Bull 36(7):1369–1377

    Article  Google Scholar 

  • Chen F, Gerion D (2004) Fluorescent CdSe/ZnS nanocrystal–peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett 4(10):1827–1832

    Article  Google Scholar 

  • Chen G, Chen W et al (2009) MRI-visible polymeric vector bearing CD3 single chain antibody for gene delivery to T cells for immunosuppression. Biomaterials 30(10):1962–1970

    Article  Google Scholar 

  • Chen H, Sulejmanovic D et al (2014) Iron-loaded magnetic nanocapsules for pH-triggered drug release and MRI imaging. Chem Mater 26(6):2105–2112

    Article  Google Scholar 

  • Chen R, Ling D et al (2015) Parallel comparative studies on mouse toxicity of oxide nanoparticle-and gadolinium-based T1 MRI contrast agents. ACS Nano 9(12):12425–12435

  • Chen X, Gambhir SS et al (2011) Theranostic nanomedicine. Acc Chem Res 44(10):841–841

    Article  Google Scholar 

  • Cheng C, Xu F et al (2011) Facile synthesis and morphology evolution of magnetic iron oxide nanoparticles in different polyol processes. New J Chem 35(5):1072–1079

    Article  Google Scholar 

  • Cheong S, Ferguson P et al (2011) Simple synthesis and functionalization of iron nanoparticles for magnetic resonance imaging. Angew Chem Int Ed 50(18):4206–4209

  • Chin AB, Yaacob II (2007) Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart's procedure. J Mater Process Technol 191(1):235–237

    Article  Google Scholar 

  • Clapsaddle BJ, Gash AE et al (2003) Silicon oxide in an iron (III) oxide matrix: the sol–gel synthesis and characterization of Fe–Si mixed oxide nanocomposites that contain iron oxide as the major phase. J Non-Cryst Solids 331(1):190–201

    Article  Google Scholar 

  • Clarkson R (2002) Blood-pool MRI contrast agents: properties and characterization. Springer, Contrast Agents I, pp 201–235

    Google Scholar 

  • Colvin, V. (2003). The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170. Find this article online.

  • Couture P, Williams G et al (2017) Nanocrystalline multiferroic BiFeO 3 thin films made by room temperature sputtering and thermal annealing, and formation of an iron oxide-induced exchange bias. J Alloys Compd 695:3061–3068

    Article  Google Scholar 

  • Cui H, Liu Y et al (2013) Structure switch between α-Fe 2 O 3, γ-Fe 2 O 3 and Fe 3 O 4 during the large scale and low temperature sol–gel synthesis of nearly monodispersed iron oxide nanoparticles. Adv Powder Technol 24(1):93–97

    Article  Google Scholar 

  • Cui X, Belo S et al (2014) Aluminium hydroxide stabilised MnFe 2 O 4 and Fe 3 O 4 nanoparticles as dual-modality contrasts agent for MRI and PET imaging. Biomaterials 35(22):5840–5846

    Article  Google Scholar 

  • Dalle-Donne I, Rossi R et al (2007) S-glutathionylation in protein redox regulation. Free Radic Biol Med 43(6):883–898

    Article  Google Scholar 

  • David B, Pizúrová N et al (2004) Preparation of iron/graphite core–shell structured nanoparticles. J Alloys Compd 378(1):112–116

    Article  Google Scholar 

  • De Montferrand C, Hu L et al (2013) Iron oxide nanoparticles with sizes, shapes and compositions resulting in different magnetization signatures as potential labels for multiparametric detection. Acta Biomater 9(4):6150–6157

    Article  Google Scholar 

  • Di Carlo L, Conte DE et al (2014) Microwave-assisted fluorolytic sol–gel route to iron fluoride nanoparticles for Li-Ion batteries. Chem Commun 50(4):460–462

    Article  Google Scholar 

  • Díaz B, Sánchez-Espinel C et al (2008) Assessing methods for blood cell cytotoxic responses to inorganic nanoparticles and nanoparticle aggregates. Small 4(11):2025–2034

    Article  Google Scholar 

  • DiMarino AM, Caplan AI et al (2013) Mesenchymal stem cells in tissue repair. Front Immunol 4:201

    Article  Google Scholar 

  • Ding Y, Hu Y et al (2004) Polymer–monomer pairs as a reaction system for the synthesis of magnetic Fe3O4–polymer hybrid hollow nanospheres. Angew Chem Int Ed 43(46):6369–6372

    Article  Google Scholar 

  • Doan BT, Seguin J et al (2012) Functionalized single-walled carbon nanotubes containing traces of iron as new negative MRI contrast agents for in vivo imaging. Contrast Media Mol Imaging 7(2):153–159

    Article  Google Scholar 

  • Dobrovolskaia MA, Patri AK et al (2009) Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomed: Nanotechnol, Biol Med 5(2):106–117

    Article  Google Scholar 

  • Dong Y, Wang H et al (2017) Electrical and hydrogen reduction enhances kinetics in doped zirconia and ceria: I. grain growth study. J Am Ceram Soc 100(3):876–886

  • Duan H, Kuang M et al (2008) Reexamining the effects of particle size and surface chemistry on the magnetic properties of iron oxide nanocrystals: new insights into spin disorder and proton relaxivity. J Phys Chem C 112(22):8127–8131

    Article  Google Scholar 

  • Dürr S, Janko C et al (2013) Magnetic nanoparticles for cancer therapy. Nanotechnol Rev 2(4):395–409

    Article  Google Scholar 

  • Duzgunes N, Düzgüneş N (2012) Nanomedicine: Infectious Diseases. Immunotherapy, Diagnostics, Antifibrotics, Toxicology and Gene Medicine, Elsevier

    Google Scholar 

  • Eghbali P, Fattahi H et al (2016) Fluorophore-tagged superparamagnetic iron oxide nanoparticles as bimodal contrast agents for MR/optical imaging. J Iran Chem Soc 13(1):87–93

  • Fang C, Zhang M (2009) Multifunctional magnetic nanoparticles for medical imaging applications. J Mater Chem 19(35):6258–6266

    Article  Google Scholar 

  • Ferguson RM, Khandhar AP et al (2015) Magnetic particle imaging with tailored iron oxide nanoparticle tracers. IEEE Trans Med Imaging 34(5):1077–1084

    Article  Google Scholar 

  • Fornara A, Johansson P et al (2008) Tailored magnetic nanoparticles for direct and sensitive detection of biomolecules in biological samples. Nano Lett 8(10):3423–3428

    Article  Google Scholar 

  • Freire T, Dutra L et al (2016) Fast ultrasound assisted synthesis of CHITOSAN-based magnetite NANOCOMPOSITES as a modified electrode sensor. In: Carbohydrate Polymers

    Google Scholar 

  • Frey NA, Peng S et al (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38(9):2532–2542

    Article  Google Scholar 

  • Gautam A, van Veggel FC (2013) Synthesis of nanoparticles, their biocompatibility, and toxicity behavior for biomedical applications. J Mater Chem B 1(39):5186–5200

    Article  Google Scholar 

  • Gessner A, Lieske A et al (2002) Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm 54(2):165–170

    Article  Google Scholar 

  • Gessner A, Lieske A et al (2003) Functional groups on polystyrene model nanoparticles: influence on protein adsorption. J Biomed Mater Res A 65(3):319–326

    Article  Google Scholar 

  • Glasgow W, Fellows B et al (2016) Continuous synthesis of iron oxide (Fe 3 O 4) nanoparticles via thermal decomposition. Particuology 26:47–53

    Article  Google Scholar 

  • Gogola D, Štrbák O et al (2013) Contrast agents based on magnetic nanoparticles and its interaction with surrounding environment during contrast imaging. MEASUREMENT:299–302

  • Grabinski CM, Salaklang J et al (2014) Multifunctionalized spions for nuclear targeting: cell uptake and gene expression. Nano 9(01):1450009

    Article  Google Scholar 

  • Gref R, Lück M et al (2000) ‘Stealth’corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 18(3):301–313

    Article  Google Scholar 

  • Guardia P, Batlle-Brugal B et al (2007) Surfactant effects in magnetite nanoparticles of controlled size. J Magn Magn Mater 316(2):e756–e759

    Article  Google Scholar 

  • Gupta AK, Curtis AS (2004) Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med 15(4):493–496

    Article  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  Google Scholar 

  • Gupta AK, Wells S (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobioscience 3(1):66–73

    Article  Google Scholar 

  • Gutiérrez L, Costo R et al (2015) Synthesis methods to prepare single-and multi-core iron oxide nanoparticles for biomedical applications. Dalton Trans 44(7):2943–2952

    Article  Google Scholar 

  • Hachani R, Lowdell M et al (2016a) Correction: polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale 8(7):4395

    Article  Google Scholar 

  • Hachani R, Lowdell M et al (2016b) Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale 8(6):3278–3287

    Article  Google Scholar 

  • Hadjipanayis CG, Bonder MJ et al (2008) Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. Small 4(11):1925–1929

    Article  Google Scholar 

  • Hajba L, Guttman A (2016) The use of magnetic nanoparticles in cancer theranostics: toward handheld diagnostic devices. Biotechnol Adv 34(4):354–361

    Article  Google Scholar 

  • Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, USA

    Book  Google Scholar 

  • Hao R, Xing R et al (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22(25):2729–2742

    Article  Google Scholar 

  • Harisinghani MG, Barentsz J et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25):2491–2499

    Article  Google Scholar 

  • Haynes CL, Hurley KR et al (2016) Mesoporous silica-coated nanoparticles. US Patent 20,160 051:471

    Google Scholar 

  • Hoshino A, Fujioka K et al (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4(11):2163–2169

    Article  Google Scholar 

  • Huang H, Zhang X-F et al (2013) Manipulated electromagnetic losses by integrating chemically heterogeneous components in Fe-based core/shell architecture. J Appl Phys 113(8):084312

    Article  Google Scholar 

  • Huang J, Zhong X et al (2012) Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics 2(1):86

    Article  Google Scholar 

  • Hufschmid R, Arami H et al (2015) Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 7(25):11142–11154

    Article  Google Scholar 

  • Huh Y-M, Jun Y-w et al (2005) In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127(35):12387–12391

    Article  Google Scholar 

  • Hurley KR, Ring HL et al (2016) Predictable heating and positive MRI contrast from a mesoporous silica-coated iron oxide nanoparticle. In: Molecular pharmaceutics

    Google Scholar 

  • Hyeon T, Lee SS et al (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123(51):12798–12801

    Article  Google Scholar 

  • Iqbal MZ, Ma X et al (2015) Silica-coated super-paramagnetic iron oxide nanoparticles (SPIONPs): a new type contrast agent of T 1 magnetic resonance imaging (MRI). J Mater Chem B 3(26):5172–5181

    Article  Google Scholar 

  • Jae-Hyun L, Yong-Min H et al (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95

    Article  Google Scholar 

  • Jagadale TC, Takale SP et al (2008) N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol–gel method. J Phys Chem C 112(37):14595–14602

    Article  Google Scholar 

  • Jain S, Rathi VV et al (2012) Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin. Nanomedicine 7(9):1311–1337

    Article  Google Scholar 

  • Jana NR, Chen Y et al (2004) Size-and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater 16(20):3931–3935

    Article  Google Scholar 

  • Jang J t, Nah H et al (2009) Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew Chem 121(7):1260–1264

    Article  Google Scholar 

  • Jennings LE, Long NJ (2009) ‘Two is better than one’—probes for dual-modality molecular imaging. Chem Commun (24):3511–3524

  • Jing, X.-h., L. Yang, et al. (2008). In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection. Joint Bone Spine 75(4): 432-438.

  • Jitianu A, Raileanu M et al (2006) Fe3O4–SiO2 nanocomposites obtained via alkoxide and colloidal route. J Sol-Gel Sci Technol 40(2-3):317–323

    Article  Google Scholar 

  • Joshi HM, Lin YP et al (2009) Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation. J Phys Chem C 113(41):17761–17767

    Article  Google Scholar 

  • Jun Y w, Lee JH et al (2008a) Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed 47(28):5122–5135

    Article  Google Scholar 

  • Jun YW, Seo JW et al (2008b) Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res 41(2):179–189

  • Kahn E, Tessier C et al (2002) Distribution of injected MRI contrast agents in mouse livers studied by confocal and SIMS microscopy. Anal Quant Cytol Histol 24(5):295–302

    Google Scholar 

  • Kamaly N, Miller AD (2010) Paramagnetic liposome nanoparticles for cellular and tumour imaging. Int J Mol Sci 11(4):1759–1776

    Article  Google Scholar 

  • Kandpal ND, Sah N et al (2014) Co-precipitation method of synthesis and characterization of iron oxide nanoparticles. J Sci Ind Res 73:87–90

  • Kasche V, de Boer M et al (2003) Direct observation of intraparticle equilibration and the rate-limiting step in adsorption of proteins in chromatographic adsorbents with confocal laser scanning microscopy. J Chromatogr B 790(1):115–129

    Article  Google Scholar 

  • Kato T, Yashiro T et al (2003) Evidence that exogenous substances can be phagocytized by alveolar epithelial cells and transported into blood capillaries. Cell Tissue Res 311(1):47–51

    Article  Google Scholar 

  • Kim BH, Lee N et al (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T 1 magnetic resonance imaging contrast agents. J Am Chem Soc 133(32):12624–12631

    Article  Google Scholar 

  • Kim D, Lee N et al (2008) Synthesis of uniform ferrimagnetic magnetite nanocubes. J Am Chem Soc 131(2):454–455

    Article  Google Scholar 

  • Kim J, Kim HS et al (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed 47(44):8438–8441

    Article  Google Scholar 

  • Kim J, Piao Y et al (2009) Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev 38(2):372–390

    Article  Google Scholar 

  • Kim SJ, Lewis B et al (2016) Superparamagnetic iron oxide nanoparticles for direct labeling of stem cells and in vivo MRI tracking. Contrast Media Mol Imaging 11(1):55–64

    Article  Google Scholar 

  • Kim YB, Bae KH et al (2009) Positive contrast visualization for cellular magnetic resonance imaging using susceptibility-weighted echo-time encoding. Magn Reson Imaging 27(5):601–610

    Article  Google Scholar 

  • Kircher MF, Gambhir SS et al (2011) Noninvasive cell-tracking methods. Nat Rev Clin Oncol 8(11):677–688

    Article  Google Scholar 

  • Kirchner C, Liedl T et al (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5(2):331–338

    Article  Google Scholar 

  • Kluchova K, Zboril R et al (2009) Superparamagnetic maghemite nanoparticles from solid-state synthesis—their functionalization towards peroral MRI contrast agent and magnetic carrier for trypsin immobilization. Biomaterials 30(15):2855–2863

    Article  Google Scholar 

  • Kolesnichenko, V., G. Goloverda, et al. (2016). Iron oxide nanoparticles with a variable size and an iron oxidation state for imaging applications.

    Google Scholar 

  • Kucheryavy P, He J et al (2013) Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents. Langmuir 29(2):710–716

    Article  Google Scholar 

  • Kuo Y-T, Chen C-Y et al (2016) Development of bifunctional gadolinium-labeled superparamagnetic nanoparticles (Gd-MnMEIO) for in vivo MR imaging of the liver in an animal model. PloS One 11(2):e0148695

  • Labarre D, Vauthier C et al (2005) Interactions of blood proteins with poly (isobutylcyanoacrylate) nanoparticles decorated with a polysaccharidic brush. Biomaterials 26(24):5075–5084

    Article  Google Scholar 

  • Lacroix L-M, Frey Huls N et al (2011) Stable single-crystalline body centered cubic Fe nanoparticles. Nano Lett 11(4):1641–1645

    Article  Google Scholar 

  • Lartigue L n, Hugounenq P et al (2012) Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 6(12):10935–10949

  • Laurent S, Bridot J-L et al (2010) Magnetic iron oxide nanoparticles for biomedical applications. Future 2(3):427–449

    Google Scholar 

  • Laurent S, Forge D et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Article  Google Scholar 

  • Lawaczeck R, Menzel M et al (2004) Superparamagnetic iron oxide particles: contrast media for magnetic resonance imaging. Appl Organomet Chem 18(10):506–513

    Article  Google Scholar 

  • Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45(1):89–121

    Article  Google Scholar 

  • Leao Andrade A, Domingos Fabris J et al (2015) Current status of magnetite-based Core@Shell structures for diagnosis and therapy in oncology short running title: biomedical applications of magnetite@shell structures. Curr Pharm Des 21(37):5417–5433

    Article  Google Scholar 

  • Lee J-H, Huh Y-M et al (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95–99

    Article  Google Scholar 

  • Lee N, Choi Y et al (2012) Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r 2 relaxivity for highly sensitive in vivo MRI of tumors. Nano Lett 12(6):3127–3131

    Article  Google Scholar 

  • Lee N, Hyeon T (2012) Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 41(7):2575–2589

    Article  Google Scholar 

  • Lee N, Kim H et al (2011) Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets. Proc Natl Acad Sci 108(7):2662–2667

    Article  Google Scholar 

  • Leonardi S, Mirzaei A et al (2016) A comparison of the ethanol sensing properties of α-iron oxide nanostructures prepared via the sol–gel and electrospinning techniques. Nanotechnology 27(7):075502

    Article  Google Scholar 

  • Li L, Jiang W et al (2013) Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics 3(8):595–615

    Article  Google Scholar 

  • Li N, Xia T et al (2008) The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 44(9):1689–1699

    Article  Google Scholar 

  • Li YF, Chen C (2011) Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications. Small 7(21):2965–2980

    Article  Google Scholar 

  • Li Z, Tan B et al (2008) Direct coprecipitation route to monodisperse dual-functionalized magnetic iron oxide nanocrystals without size selection. Small 4(2):231–239

    Article  Google Scholar 

  • Lindman S, Lynch I et al (2007) Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett 7(4):914–920

    Article  Google Scholar 

  • Ling D, Hyeon T (2013) Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small 9(9-10):1450–1466

    Article  Google Scholar 

  • Ling D, Lee N et al (2015) Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc Chem Res 48(5):1276–1285

    Article  Google Scholar 

  • Liu G, Gao J et al (2013) Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 9(9-10):1533–1545

    Article  Google Scholar 

  • Liu G, Xie J et al (2011) N-alkyl-PEI-functionalized iron oxide nanoclusters for efficient siRNA delivery. Small 7(19):2742–2749

    Article  Google Scholar 

  • Liu H, Chi D (2016) Synthesis of iron sulfide and iron oxide nanocrystal thin films for green energy applications. Procedia Eng 141:32–37

  • Liu W, Ma J et al (2016) Micron-size superparamagnetic iron-oxides watercress with unique MRI properties. Mater Chem Phys 170:123–128

  • Long GJ, Grandjean F (2013) Mössbauer spectroscopy applied to inorganic chemistry. Media, Springer Science & Business

    Google Scholar 

  • Lynch I (2007) Are there generic mechanisms governing interactions between nanoparticles and cells? Epitope mapping the outer layer of the protein–material interface. Physica A: Statistical Mechanics and its Applications 373:511–520

    Article  Google Scholar 

  • Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3(1):40–47

  • Magnitsky S, Zhang J et al (2017) Positive contrast from cells labeled with iron oxide nanoparticles: quantitation of imaging data. Magn Reson Med 78(5):1900–1910

  • Mailänder V, Lorenz MR et al (2008) Carboxylated superparamagnetic iron oxide particles label cells intracellularly without transfection agents. Mol Imaging Biol 10(3):138–146

    Article  Google Scholar 

  • Mao B, Kang Z et al (2006) Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method. Mater Res Bull 41(12):2226–2231

    Article  Google Scholar 

  • Markides H, Rotherham M et al (2012) Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J Nanomater 2012:13

    Article  Google Scholar 

  • Masthoff I-C, Kraken M et al (2016) Study of the growth of hydrophilic iron oxide nanoparticles obtained via the non-aqueous sol–gel method. J Sol-Gel Sci Technol 77(3):553–564

    Article  Google Scholar 

  • Matijevic E, Borkovec M (2012) Surface and colloid science. Springer US.

  • Mazuel F, Espinosa A et al (2016) Massive intracellular biodegradation of iron oxide nanoparticles evidenced magnetically at single-endosome and tissue levels. ACS Nano 10(8):7627–7638

  • McDonagh BH, Singh G et al (2016) L-dopa-coated manganese oxide nanoparticles as dual MRI contrast agents and drug-delivery vehicles. Small 12(3):301–306

    Article  Google Scholar 

  • Møller P, Jacobsen NR et al (2010) Role of oxidative damage in toxicity of particulates. Free Radic Res 44(1):1–46

  • Monopoli MP, Walczyk D et al (2011) Physical–chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133(8):2525–2534

    Article  Google Scholar 

  • Monteiro-Riviere N, Inman A et al (2009) Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 234(2):222–235

    Article  Google Scholar 

  • Mooney DJ, Vandenburgh H (2008) Cell delivery mechanisms for tissue repair. Cell Stem Cell 2(3):205–213

  • Morris MC, Gros E et al (2007) A non-covalent peptide-based carrier for in vivo delivery of DNA mimics. Nucleic Acids Res 35(7):e49

    Article  Google Scholar 

  • Mou X, Ali Z et al (2015) Applications of magnetic nanoparticles in targeted drug delivery system. J Nanosci Nanotechnol 15(1):54–62

    Article  Google Scholar 

  • Mulder WJ, Griffioen AW et al (2007) Magnetic and fluorescent nanoparticles for multimodality imaging. Nanomedicine 2(3):307–324

    Article  Google Scholar 

  • Mulens, V., M. d. P. Morales, et al. (2013). Development of magnetic nanoparticles for cancer gene therapy: a comprehensive review. ISRN Nanomaterials 2013.

  • Na HB, Song IC et al (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(21):2133–2148

    Article  Google Scholar 

  • Nachimuthu RK, Jeffery RD et al (2014) Investigation of cerium-substituted europium iron garnets deposited by biased target ion beam deposition. IEEE Trans Magn 50(12):1–7

    Article  Google Scholar 

  • Nagineni VS, Zhao S et al (2005) Microreactors for syngas conversion to higher alkanes: characterization of sol–gel-encapsulated nanoscale Fe–Co catalysts in the microchannels. Ind Eng Chem Res 44(15):5602–5607

    Article  Google Scholar 

  • Neamnark A, Suwantong O et al (2009) Aliphatic lipid substitution on 2 kDa polyethylenimine improves plasmid delivery and transgene expression. Mol Pharm 6(6):1798–1815

    Article  Google Scholar 

  • Nel A, Xia T et al (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  Google Scholar 

  • Nie Z, Petukhova A et al (2010) Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat Nanotechnol 5(1):15–25

    Article  Google Scholar 

  • Nitin N, LaConte L et al (2004) Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. JBIC. J Biol Inorg Chem 9(6):706–712

    Article  Google Scholar 

  • Nizameev, I., A. Mustafina, et al. (2017). High performance magneto-fluorescent nanoparticles assembled from terbium and gadolinium 1, 3-diketones.

    Google Scholar 

  • Nyström AM, Fadeel B (2012) Safety assessment of nanomaterials: implications for nanomedicine. J Control Release 161(2):403–408

    Article  Google Scholar 

  • Oberdörster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112(10):1058

    Article  Google Scholar 

  • Oberdörster G, Oberdörster E et al (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823

    Article  Google Scholar 

  • Otsuka H, Nagasaki Y et al (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55(3):403–419

    Article  Google Scholar 

  • Padmanabhan P, Kumar A et al (2016) Nanoparticles in practice for molecular-imaging applications: an overview. In: Acta biomaterialia

    Google Scholar 

  • Palekar RU, Jallouk AP et al (2015) Molecular imaging of atherosclerosis with nanoparticle-based fluorinated MRI contrast agents. Nanomedicine 10(11):1817–1832

    Article  Google Scholar 

  • Park J, Lee E et al (2005) One-nanometer-scale size-controlled synthesis of monodisperse magnetic Iron oxide nanoparticles. Angew Chem 117(19):2932–2937

    Article  Google Scholar 

  • Patel S, Hota G (2016) Iron oxide nanoparticle-immobilized PAN nanofibers: synthesis and adsorption studies. RSC Adv 6(19):15402–15414

    Article  Google Scholar 

  • Pereira C, Pereira AM et al (2012) Superparamagnetic MFe2O4 (M= Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem Mater 24(8):1496–1504

    Article  Google Scholar 

  • Petersen EJ, Nelson BC (2010) Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Anal Bioanal Chem 398(2):613–650

    Article  Google Scholar 

  • Piao Y, Burns A et al (2008) Designed fabrication of silica-based nanostructured particle systems for nanomedicine applications. Adv Funct Mater 18(23):3745–3758

    Article  Google Scholar 

  • Pisanic TR, Blackwell JD et al (2007) Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 28(16):2572–2581

    Article  Google Scholar 

  • Poller WC, Ramberger E et al (2016) Uptake of citrate-coated iron oxide nanoparticles into atherosclerotic lesions in mice occurs via accelerated transcytosis through plaque endothelial cells. Nano Res 9(11):3437–3452

    Article  Google Scholar 

  • Primc D, Belec B et al (2016) Synthesis of composite nanoparticles using co-precipitation of a magnetic iron-oxide shell onto core nanoparticles. J Nanopart Res 18(3):1–13

    Article  Google Scholar 

  • Rabias I, Fardis M et al (2008) No aging phenomena in ferrofluids: the influence of coating on interparticle interactions of maghemite nanoparticles. ACS Nano 2(5):977–983

  • Rabias I, Fardis M et al (2015) Novel synthesis of ultra-small dextran coated maghemite nanoparticles for MRI and CT contrast agents via a low temperature co-precipitation reaction. J Nanosci Nanotechnol 15(1):205–210

    Article  Google Scholar 

  • Ramniceanu G, Doan B-T et al (2016) Delayed hepatic uptake of multi-phosphonic acid poly (ethylene glycol) coated iron oxide measured by real-time magnetic resonance imaging. RSC Adv 6(68):63788–63800

    Article  Google Scholar 

  • Reddy LH, Arias JL et al (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878

    Article  Google Scholar 

  • Remya N, Syama S et al (2016) Toxicity, toxicokinetics and biodistribution of dextran stabilized iron oxide nanoparticles for biomedical applications. Int J Pharm 511(1):586–598

    Article  Google Scholar 

  • Riaz S, Ashraf R et al (2014) Microwave assisted iron oxide nanoparticles—structural and magnetic properties. IEEE Trans Magn 50(8):1–4

    Google Scholar 

  • Richard S, Eder V et al (2016) USPIO size control through microwave nonaqueous sol-gel method for neoangiogenesis T2 MRI contrast agent. Nanomedicine 11(21):2769–2779

    Google Scholar 

  • Rivera Gil P, Oberdörster G n et al (2010) Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future. Acs Nano 4(10):5527–5531

    Article  Google Scholar 

  • Roca A, Morales M et al (2006) Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors. Nanotechnology 17(11):2783

    Article  Google Scholar 

  • Roca AG, Marco JF et al (2007) Effect of nature and particle size on properties of uniform magnetite and maghemite nanoparticles. J Phys Chem C 111(50):18577–18584

    Article  Google Scholar 

  • Rozanova N, Zhang JZ (2013) Metal and magnetic nanostructures for cancer diagnosis and therapy. Reviews in. Nanosci Nanotechnol 2(1):29–41

    Article  Google Scholar 

  • Rubio-Navarro A, Carril M et al (2016) CD163-macrophages are involved in rhabdomyolysis-induced kidney injury and may be detected by MRI with targeted gold-coated iron oxide nanoparticles. Theranostics 6(6):896

    Article  Google Scholar 

  • Saeidian H, Moghaddam FM et al (2009) Superabsorbent polymer as nanoreactors for preparation of hematite nanoparticles and application of the prepared nanocatalyst for the Friedel-Crafts acylation. J Braz Chem Soc 20(3):466–471

    Article  Google Scholar 

  • Safontseva NY, Nikiforov IY (2001) On the shape of iron K absorption edges for monoferrites with a Me (Mg, Mn, Ni, Zn) Fe 2 O 4 spinel structure. Phys Solid State 43(1):61–64

    Article  Google Scholar 

  • Salvador-Morales C, Flahaut E et al (2006) Complement activation and protein adsorption by carbon nanotubes. Mol Immunol 43(3):193–201

    Article  Google Scholar 

  • Santra S, Tapec R et al (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17(10):2900–2906

    Article  Google Scholar 

  • Sathya A, Guardia P et al (2016) Co x Fe3–x O4 nanocubes for theranostic applications: effect of cobalt content and particle size. Chem Mater 28(6):1769–1780

    Article  Google Scholar 

  • Sayes CM, Gobin AM et al (2005) Nano-C 60 cytotoxicity is due to lipid peroxidation. Biomaterials 26(36):7587–7595

    Article  Google Scholar 

  • Schäfer R, Kehlbach R et al (2007) Transferrin receptor upregulation: in vitro labeling of rat mesenchymal stem cells with superparamagnetic iron oxide. Radiology 244(2):514–523

    Article  Google Scholar 

  • Shabestari Khiabani S, Farshbaf M et al (2016) Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy. Artif Cells Nanomed Biotechnol 45(1):6–17

  • Sharifi S, Behzadi S et al (2012) Toxicity of nanomaterials. Chem Soc Rev 41(6):2323–2343

    Article  Google Scholar 

  • Sheng-Nan S, Chao W et al (2014) Magnetic iron oxide nanoparticles: synthesis and surface coating techniques for biomedical applications. Chin Phys B 23(3):037503

    Article  Google Scholar 

  • Shin J, Anisur RM et al (2009) Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. Angew Chem Int Ed 48(2):321–324

    Article  Google Scholar 

  • Shin T-H, Choi Y et al (2015) Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev 44(14):4501–4516

    Article  Google Scholar 

  • Simberg D, Park J-H et al (2009) Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials 30(23):3926–3933

    Article  Google Scholar 

  • Simeonidis K, Mourdikoudis S et al (2007) Controlled synthesis and phase characterization of Fe-based nanoparticles obtained by thermal decomposition. J Magn Magn Mater 316(2):e1–e4

    Article  Google Scholar 

  • Smolensky ED, Park H-YE et al (2013) Scaling laws at the nanosize: the effect of particle size and shape on the magnetism and relaxivity of iron oxide nanoparticle contrast agents. J Mater Chem B 1(22):2818–2828

    Article  Google Scholar 

  • Soenen SJ, Brisson AR et al (2009) Addressing the problem of cationic lipid-mediated toxicity: the magnetoliposome model. Biomaterials 30(22):3691–3701

    Article  Google Scholar 

  • Soenen SJ, De Cuyper M (2009) Assessing cytotoxicity of (iron oxide-based) nanoparticles: an overview of different methods exemplified with cationic magnetoliposomes. Contrast Media Mol Imaging 4(5):207–219

    Article  Google Scholar 

  • Soenen SJ, Himmelreich U et al (2011) Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling. Biomaterials 32(1):195–205

    Article  Google Scholar 

  • Soenen SJ, Illyes E et al (2009) The role of nanoparticle concentration-dependent induction of cellular stress in the internalization of non-toxic cationic magnetoliposomes. Biomaterials 30(36):6803–6813

    Article  Google Scholar 

  • Sohn O-J, Kim C-K et al (2008) Immobilization of glucose oxidase and lactate dehydrogenase onto magnetic nanoparticles for bioprocess monitoring system. Biotechnol Bioprocess Eng 13(6):716–723

    Article  Google Scholar 

  • Sood A, Arora V et al (2016) Ascorbic acid-mediated synthesis and characterisation of iron oxide/gold core–shell nanoparticles. J Exp Nanosci 11(5):370–382

    Article  Google Scholar 

  • Sood A, Arora V et al (2017) Multifunctional gold coated iron oxide core-shell nanoparticles stabilized using thiolated sodium alginate for biomedical applications. Mater Sci Eng C 80:274–281

    Article  Google Scholar 

  • Souto EB, Müller RH (2010) Lipid nanoparticles: effect on bioavailability and pharmacokinetic changes. Springer, Drug delivery, pp 115–141

    Google Scholar 

  • Stephen ZR, Kievit FM et al (2011) Magnetite nanoparticles for medical MR imaging. Mater Today 14(7):330–338

    Article  Google Scholar 

  • Sun DH, Trindade MC et al (2003) Human serum opsonization of orthopedic biomaterial particles: protein-binding and monocyte/macrophage activation in vitro. J Biomed Mater Res A 65(2):290–298

    Article  Google Scholar 

  • Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205

    Article  Google Scholar 

  • Sun S, Zeng H et al (2004) Monodisperse mfe2o4 (m= fe, co, mn) nanoparticles. J Am Chem Soc 126(1):273–279

    Article  Google Scholar 

  • Szpak A, Fiejdasz S et al (2014) T1–T2 Dual-modal MRI contrast agents based on superparamagnetic iron oxide nanoparticles with surface attached gadolinium complexes. J Nanopart Res 16(11):1–11

    Article  Google Scholar 

  • Takami S, Sato T et al (2007) Hydrothermal synthesis of surface-modified iron oxide nanoparticles. Mater Lett 61(26):4769–4772

    Article  Google Scholar 

  • Tang Y, Chen Q (2007) A simple and practical method for the preparation of magnetite nanowires. Chem Lett 36(7):840–841

    Article  Google Scholar 

  • Tarin C, Carril M et al (2015) Targeted gold-coated iron oxide nanoparticles for CD163 detection in atherosclerosis by MRI. Scientific reports 5

  • Tartaj P, González-Carreño T et al (2004) From hollow to dense spheres: control of dipolar interactions by tailoring the architecture in colloidal aggregates of superparamagnetic iron oxide nanocrystals. Adv Mater 16(6):529–533

    Article  Google Scholar 

  • Tartaj P, Serna CJ (2002) Microemulsion-assisted synthesis of tunable superparamagnetic composites. Chem Mater 14(10):4396–4402

    Article  Google Scholar 

  • Tassa C, Shaw SY et al (2011) Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res 44(10):842–852

    Article  Google Scholar 

  • Tavakoli A, Sohrabi M et al (2007) A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem Pap 61(3):151–170

    Article  Google Scholar 

  • Tenzer S, Docter D et al (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8(10):772–781

    Article  Google Scholar 

  • Thomas R, Park I-K et al (2013) Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. Int J Mol Sci 14(8):15910–15930

    Article  Google Scholar 

  • Thorek DL, Chen AK et al (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34(1):23–38

    Article  Google Scholar 

  • Thu MS, Bryant LH et al (2012) Self-assembling nanocomplexes by combining ferumoxytol, heparin and protamine for cell tracking by magnetic resonance imaging. Nat Med 18(3):463–467

    Article  Google Scholar 

  • Tombácz E, Turcu R et al (2015) Magnetic iron oxide nanoparticles: recent trends in design and synthesis of magnetoresponsive nanosystems. Biochem Biophys Res Commun 468(3):442–453

    Article  Google Scholar 

  • Tong S, Hou S et al (2010) Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett 10(11):4607–4613

    Article  Google Scholar 

  • Trewyn BG, Slowing II et al (2007) Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc Chem Res 40(9):846–853

    Article  Google Scholar 

  • Tromsdorf UI, Bruns OT et al (2009) A highly effective, nontoxic T 1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett 9(12):4434–4440

    Article  Google Scholar 

  • Umair M, Javed I et al (2016) Nanotoxicity of inert materials: the case of gold, silver and iron. J Pharm Pharm Sci 19(2):161–180

    Article  Google Scholar 

  • Unfried K, Albrecht C et al (2007) Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology 1(1):52–71

    Article  Google Scholar 

  • van Schooneveld MM, Vucic E et al (2008) Improved biocompatibility and pharmacokinetics of silica nanoparticles by means of a lipid coating: a multimodality investigation. Nano Lett 8(8):2517–2525

    Article  Google Scholar 

  • Walkey CD, Chan WC (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41(7):2780–2799

    Article  Google Scholar 

  • Wang W, Pacheco V et al (2012a) Size and compositional effects on contrast efficiency of functionalized superparamagnetic nanoparticles at ultralow and ultrahigh magnetic fields. J Phys Chem C 116(33):17880–17884

    Article  Google Scholar 

  • Wang H, Shrestha TB et al (2012b) Magnetic-Fe/Fe3O4-nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages. Beilstein J Nanotechnol 3:444

    Article  Google Scholar 

  • Wang L, Tang W et al (2014) Improving detection specificity of iron oxide nanoparticles (IONPs) using the SWIFT sequence with long T 2 suppression. Magn Reson Imaging 32(6):671–678

    Article  Google Scholar 

  • Wang Q, Shen M et al (2015) Low toxicity and long circulation time of polyampholyte-coated magnetic nanoparticles for blood pool contrast agents. Sci Rep 5:7774

  • Wang Y-XJ, Hussain SM et al (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11(11):2319–2331

    Article  Google Scholar 

  • Wang, Y., C. Xu, et al. (2013). Commercial nanoparticles for stem cell labeling and.

    Google Scholar 

  • Warheit DB, Laurence BR et al (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77(1):117–125

    Article  Google Scholar 

  • Wei W, Quanguo H et al (2007) Preparation and characterization of magnetite Fe3O4 nanopowders. Rare Metal Mater Eng 36:238–243

    Google Scholar 

  • Weissleder R, Lee H (2017) et al. Magnetic nanoparticles, Google Patents

    Google Scholar 

  • Wetterskog E, Agthe M et al (2016) Precise control over shape and size of iron oxide nanocrystals suitable for assembly into ordered particle arrays. In: Science and Technology of Advanced Materials

    Google Scholar 

  • William WY, Chang E et al (2006) Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer. Nanotechnology 17(17):4483

    Article  Google Scholar 

  • Woo K, Hong J et al (2004) Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem Mater 16(14):2814–2818

    Article  Google Scholar 

  • Wu J, Ding T et al (2013) Neurotoxic potential of iron oxide nanoparticles in the rat brain striatum and hippocampus. Neurotoxicology 34:243–253

    Article  Google Scholar 

  • Wu S, Sun A et al (2011) Fe 3 O 4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater Lett 65(12):1882–1884

    Article  Google Scholar 

  • Wu W, Wu Z et al (2015a) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16(2):023501

    Article  Google Scholar 

  • Wu M, Zhang D et al (2015b) Nanocluster of superparamagnetic iron oxide nanoparticles coated with poly (dopamine) for magnetic field-targeting, highly sensitive MRI and photothermal cancer therapy. Nanotechnology 26(11):115102

    Article  Google Scholar 

  • Xia T, Kovochich M et al (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807

    Article  Google Scholar 

  • Xu C, Sun S (2013) New forms of superparamagnetic nanoparticles for biomedical applications. Adv Drug Deliv Rev 65(5):732–743

    Article  Google Scholar 

  • Xu C, Teja AS (2008) Continuous hydrothermal synthesis of iron oxide and PVA-protected iron oxide nanoparticles. J Supercrit Fluids 44(1):85–91

    Article  Google Scholar 

  • Xu J, Yang H et al (2007) Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. J Magn Magn Mater 309(2):307–311

    Article  Google Scholar 

  • Yalcin S, Khodadust R et al (2015) Synthesis and characterization of polyhydroxybutyrate coated magnetic nanoparticles: toxicity analyses on different cell lines. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal. Chemistry 45(5):700–708

    Google Scholar 

  • Yang H, Zhuang Y et al (2011) Targeted dual-contrast T1- and T 2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. Biomaterials 32(20):4584–4593

    Article  Google Scholar 

  • Yang M, Gao L et al (2015a) Characterization of Fe 3 O 4/SiO 2/Gd 2 O (CO 3) 2 core/shell/shell nanoparticles as T1 and T2 dual mode MRI contrast agent. Talanta 131:661–665

    Article  Google Scholar 

  • Yang L, Zhou Z et al (2015b) Europium-engineered iron oxide nanocubes with high T1 and T2 contrast abilities for MRI in living subjects. Nanoscale 7(15):6843–6850

    Article  Google Scholar 

  • Yang X, Gondikas AP et al (2011) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46(2):1119–1127

    Article  Google Scholar 

  • Yazdani F, Fattahi B et al (2016) Synthesis of functionalized magnetite nanoparticles to use as liver targeting MRI contrast agent. J Magn Magn Mater 406:207–211

    Article  Google Scholar 

  • Yen SK, Padmanabhan P et al (2013) Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics 3(12):986

    Article  Google Scholar 

  • Yoon TJ, Lee H et al (2011) Highly magnetic core–shell nanoparticles with a unique magnetization mechanism. Angew Chem Int Ed 50(20):4663–4666

    Article  Google Scholar 

  • Yu L, Yang X et al (2011) Preparation and magnetic properties of doped Ni-Fe/Fe3O4 nanocomposite. Mater Manuf Process 26(11):1383–1387

    Article  Google Scholar 

  • Zelina P, Jašek O et al (2012) Versatile low-pressure plasma-enhanced process for synthesis of iron and iron-based magnetic nanopowders. World Journal of. Engineering 9(2):161–166

    Google Scholar 

  • Zeng D-W, Xiao R et al (2016) Liquid foam assisted sol–gel synthesis of iron oxides for hydrogen storage via chemical looping. Int J Hydrog Energy 41(32):13923–13933

    Article  Google Scholar 

  • Zeng L, Ren W et al (2012) Ultrasmall water-soluble metal-iron oxide nanoparticles as T 1-weighted contrast agents for magnetic resonance imaging. Phys Chem Chem Phys 14(8):2631–2636

    Article  Google Scholar 

  • Zhang H, Malik V et al (2017) Synthesis and characterization of Gd-doped magnetite nanoparticles. J Magn Magn Mater 423:386–394

    Article  Google Scholar 

  • Zhang J, Ring HL et al (2016) Quantification and biodistribution of iron oxide nanoparticles in the primary clearance organs of mice using T1 contrast for heating. Magn Reson Med 78(2):702–712

  • Zhao X, Wang J et al (2010a) Removal of fluoride from aqueous media by Fe 3 O 4@ Al (OH) 3 magnetic nanoparticles. J Hazard Mater 173(1):102–109

    Article  Google Scholar 

  • Zhao M-X, Xia Q et al (2010b) Synthesis, biocompatibility and cell labeling of L-arginine-functional β-cyclodextrin-modified quantum dot probes. Biomaterials 31(15):4401–4408

    Article  Google Scholar 

  • Zhao Z, Zhou Z et al (2013) Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging. Nat Commun 4:2266

    Google Scholar 

  • Zhou Z, Wang L et al (2013) Engineered iron-oxide-based nanoparticles as enhanced T 1 contrast agents for efficient tumor imaging. ACS nano 7(4):3287–3296

    Article  Google Scholar 

  • Zou J, Ostrovsky S et al (2016) Efficient penetration of ceric ammonium nitrate oxidant-stabilized gamma-maghemite nanoparticles through the oval and round windows into the rat inner ear as demonstrated by MRI. In: Journal of Biomedical Materials Research Part B: Applied Biomaterials

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Higher Education Commission Pakistan for financial support under NRPU project No. 6411.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Javed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javed, Y., Akhtar, K., Anwar, H. et al. MRI based on iron oxide nanoparticles contrast agents: effect of oxidation state and architecture. J Nanopart Res 19, 366 (2017). https://doi.org/10.1007/s11051-017-4045-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-4045-x

Keywords

Navigation