Skip to main content
Log in

Highly selective colorimetric detection of Ni2+ using silver nanoparticles cofunctionalized with adenosine monophosphate and sodium dodecyl sulfonate

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report a dual-ligand strategy based on silver nanoparticles (AgNPs) for highly selective detection of Ni2+ using colorimetric techniques. Adenosine monophosphate (AMP) and sodium dodecyl sulfonate (SDS) were both used as ligands to modify AgNPs. The presence of Ni2+ induces the aggregation of AgNPs through cooperative electrostatic interaction and metal–ligand interaction, resulting in a color change from bright yellow to orange. The cofunctionalized AgNPs showed obvious advantages over the ones functionalized only by AMP or SDS in terms of selectivity. Under the optimized conditions, this sensing platform for Ni2+ works in the concentration range of 4.0 to 60 μM and has a low detection limit of 0.60 μM. In addition, the colorimetric assay is very fast, and the whole analysis can be completed within a few minutes. Thus, it can be directly used in tap water and lake water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Annadhasan M, Kasthuri J, Rajendiran (2015) Green synthesis of gold nanoparticles under sunlight irradiation and their colorimetric detection of Ni2+ and Co2+ ions. RSC Adv 5:11458–11468

    Article  Google Scholar 

  • Austin LA, Mackey MA, Dreaden EC, Ei-Sayed MA (2014) The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch Toxicol 88:1391–1417

    Article  Google Scholar 

  • Carolina Alves DS, Marcelo Martins S, Avinash PI, Indarchand G, Stefania G, Massimiliano G, Aniket G, Mahendra R (2014) Silver nanoparticles: therapeutical uses, toxicity, and safety issues. Pharm Sci 103:1931–1944

    Article  Google Scholar 

  • Chen GH, Chen WY, Yen YC, Wang CW, Chang HT, Chen CF (2014a) Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal Chem 86:6843–6849

    Article  Google Scholar 

  • Chen L, Li JH, Chen LX (2014b) Colorimetric detection of mercury species based on functionalized gold nanoparticles. ACS Appl Mater Interfaces 6:15897–15904

    Article  Google Scholar 

  • Deblina S, Kumar PA, Kumar MT (2016) Benzimidazole based ratiometric and colourimetric chemosensor for Ni2+. Spectrochim Acta A 153:397–401

    Article  Google Scholar 

  • Filippo E, Manno D, Buccolieri A, Serra A (2013) Green synthesis of sucralose-capped silver nanoparticles for fast colorimetric triethylamine detection. Sensors Actuators B Chem 178:1–9

    Article  Google Scholar 

  • Ganjali MR, Hosseini M, Motalebi M, Sedaghat M, Mizani F, Faridbod F, Norouzi P (2015) Selective recognition of Ni2+ ion based on fluorescence enhancement chemosensor. Spectrochim Acta A 140:283–287

    Article  Google Scholar 

  • Gupta VK, Goyal RN, Agarwal S, Kumar P, Bachheti N (2007) Nickel(II)-selective sensor based on dibenzo-18-crown-6 in PVC matrix. Talanta 71:795–800

    Article  Google Scholar 

  • Isabel D, Paula E, Monika O, Markus BL, Olli I, Robin HAR (2011) Functionalization of nanofibrillated cellulose with silver nanoclusters: fluorescence and antibacterial activity. Macromol Biosci 11:1185–1191

    Article  Google Scholar 

  • Jankowski K, Yao J, Kasiura K, Jackowska A, Sieradzka A (2005) Multielement determination of heavy metals in water samples by continuous powder introduction microwave-induced plasma atomic emission spectrometry after preconcentration on activated carbon. Spectrochim Acta B 60:369–375

    Article  Google Scholar 

  • Joseph S, Mathew B (2015) Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. J Mol Liq 204:184–191

    Article  Google Scholar 

  • Kang JH, Lee SY, Ahn HM, Kim C (2017) A novel colorimetric chemosensor for the sequential detection of Ni2+ and CN in aqueous solution. Sensors Actuators B Chem 242:25–34

    Article  Google Scholar 

  • Kang Y, Wu T, Liu BX, Wang X, Du YP (2014) Selective determination of mercury (Hg2+) by self-referenced surface-enhanced raman scattering using dialkyne-modified silver nanoparticles. Microchim Acta 181:1333–1339

    Article  Google Scholar 

  • Kumar VV, Anthony SP (2014) Silver nanoparticles based selective colorimetric sensor for Cd2+, Hg2+ and Pb2+ ions: tuning sensitivity and selectivity using co-stabilizing agents. Sensors Actuators B Chem 191:31–36

    Article  Google Scholar 

  • Li HB, Cui ZM, Han CP (2009) Glutathione-stabilized silver nanoparticles as colorimetric sensor for Ni2+ ion. Sensors Actuators B Chem 143:87–92

    Article  Google Scholar 

  • Li HB, Li FY, Han CP, Cui ZM, Xie GY, Zhang AQ (2010) Highly sensitive and selective tryptophan colorimetric sensor based on 4,4-bipyridine-functionalized silver nanoparticles. Sensors Actuators B Chem 145:194–199

    Article  Google Scholar 

  • Noh KC, Nam YS, Lee HJ, Lee KB (2015) A colorimetric probe to determination Pb2+ using functionalized silver nanoparticles. Analyst 140:8209–8216

    Article  Google Scholar 

  • Pourreza N, Golmohammadi H, Naghdi T, Yousefi H (2015) Green in-situ synthesized silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor. Biosens Bioelectron 74:353–359

    Article  Google Scholar 

  • Ragsdale SW (2008) Nickel and its surprising impact in nature. Angew Chem Int Ed 47:824–826

    Article  Google Scholar 

  • Rameshkumar P, Viswanathan P, Ramaraj R (2014) Silicate sol-gel stabilized silver nanoparticles for sensor applications toward mercuric ions, hydrogen peroxide and nitrobenzene. Sensors Actuators B Chem 202:1070–1077

    Article  Google Scholar 

  • Sun ZM, Liang P, Ding Q, Cao J (2006) Determination of trace nickel in water samples by cloud point extraction preconcentration coupled with graphite furnace atomic absorption spectrometry. J Hazard Mater 137:943–946

    Article  Google Scholar 

  • Tai SP, Wu Y, Shieh DB, Chen LJ, Lin KJ, Yu CH, Chu SW, Chang CH, Shi XY, Wen YC (2007) Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles. Adv Mater 19:4520–4523

    Article  Google Scholar 

  • Tedsana W, Tuntulani T, Ngeontae W (2015) A circular dichroism sensor for Ni2+ and Co2+ based on L-cysteine capped cadmium sulfide quantum dots. Anal Chim Acta 867:1–8

    Article  Google Scholar 

  • Yang Y, Yuan Z, Liu XP, Liu Q, Mao CJ, Niu HL, Jin BK, Zhang SY (2016) Electrochemical biosensor for Ni2+ detection based on a DNAzyme-CdSe nanocomposite. Biosens Bioelectron 77:13–18

    Article  Google Scholar 

  • Yin YD, Li ZY, Zhong ZY, Gates B, Xia YN, Venkateswaran S (2002) Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. J Mater Chem 12:522–527

    Article  Google Scholar 

  • Zhang M, Liu YQ, Ye BC (2012) Colorimetric assay for parallel detection of Cd2+, Ni2+ and Co2+ using peptide-modified gold nanoparticles. Analyst 137:601–607

    Article  Google Scholar 

Download references

Funding

This study was funded by the Natural Science Foundation of China (no. 21505067).

Author information

Authors and Affiliations

Authors

Contributions

The first two authors contributed equally to this work.

Corresponding author

Correspondence to Pengcheng Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

.

ESM 1

(DOCX 18.6 kb)

ESM 2

(DOCX 164 kb)

ESM 3

(DOCX 77.4 kb)

ESM 4

(DOCX 128 kb)

ESM 5

(DOCX 121 kb)

ESM 6

(DOCX 665 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Jin, W., Huang, P. et al. Highly selective colorimetric detection of Ni2+ using silver nanoparticles cofunctionalized with adenosine monophosphate and sodium dodecyl sulfonate. J Nanopart Res 19, 306 (2017). https://doi.org/10.1007/s11051-017-3998-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3998-0

Keywords

Navigation