Skip to main content
Log in

Post-modified acid-base bifunctional MIL-101(Cr) for one-pot deacetalization-Knoevenagel reaction

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A novel and convenient approach for the construction of the bifunctional MIL-101 material bearing sulfonic acid and amino groups was established via the post-synthetic modification. This material possesses high BET surface area (1446 m2/g) and large pore volume (0.77 cm3/g). Significantly, this material could serve as a bifunctional heterogeneous catalyst and was initially employed for one-pot deacetalization-Knoevenagel reaction, exhibiting excellent catalytic performance (yield 99.74%). More importantly, it can be easily recovered and reused at least three times. Finally, our proposed catalytic mechanism indicated that amino and the sulfonic acid groups played a synergistic effect on this one-pot deacetalization-Knoevenagel reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ansari SA, Khan MM, Ansari MO et al (2014) Highly photoactive SnO2 nanostructures engineered by electrochemically active biofilm. New J Chem 38:2462–2469. doi:10.1039/C3NJ01488F

    Article  Google Scholar 

  • Bai Z, Yuan L, Zhu L et al (2015) Introduction of amino groups into acid-resistant MOFs for enhanced U(VI) sorption. J Mater Chem A 3:525–534. doi:10.1039/c4ta04878d

    Article  Google Scholar 

  • Bernt S, Guillerm V, Serreb C et al (2011) Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. Chem Commun 47:2838–2840. doi:10.1039/c0cc04526h

    Article  Google Scholar 

  • Bhattacharjee S, Chena C, Ahn WS (2014) Chromium terephthalate metal–organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis. RSC Adv 4:52500–52525. doi:10.1039/c4ra11259h

    Article  Google Scholar 

  • Chen J, Li K, Chen L et al (2014) Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal–organic frameworks. Green Chem 16:2490–2499. doi:10.1039/c3gc42414f

    Article  Google Scholar 

  • Cullity BD, Stock SR (1978) Elements of X-ray diffraction. Addison Wesley, London

    Google Scholar 

  • Dhakshinamoorthy A, Alvaro M, Garcia H (2012) Commercial metal–organic frameworks as heterogeneous catalysts. Chem Commun 48:11275–11288. doi:10.1039/c2cc34329k

    Article  Google Scholar 

  • Férey G, Mellot-Draznieks C, Serre C et al (2005) A Chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309:2040–2042. doi:10.1126/science.1116275

    Article  Google Scholar 

  • Gianotti E, Diaz U, Veltya A et al (2013) Designing bifunctional acid–base mesoporous hybrid catalysts for cascade reactions. Catal Sci Technol 3:2677–2688. doi:10.1039/c3cy00269a

    Article  Google Scholar 

  • Goesten MG, Juan-Alcañiz J, Ramos-Fernandez EV et al (2011) Sulfation of metal–organic frameworks: opportunities for acid catalysis and proton conductivity. J Catal 281:177–187. doi:10.1016/j.jcat.2011.04.015

    Article  Google Scholar 

  • Gu X, Lu Z, Jiang H et al (2011) Synergistic catalysis of metal–organic framework-immobilized Au–Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. J Am Chem Soc 133:11822–11825. doi:10.1021/ja200122f

    Article  Google Scholar 

  • Guan J, Liu B, Yang X et al (2014) Immobilization of proline onto Al-SBA-15 for C–C bond-forming reactions. ACS Sustain Chem Eng 2:925–933. doi:10.1021/sc4005247

    Article  Google Scholar 

  • Hasan Z, Choi E, Jhung SH (2013) Adsorption of naproxen and clofibric acid over a metal–organic framework MIL-101 functionalized with acidic and basic groups. Chem Eng J 219:537–544. doi:10.1016/j.cej.2013.01.002

    Article  Google Scholar 

  • Hong BD, Hwang YK, Serre C et al (2009) Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis. Adv Funct Mater 19:1537–1552. doi:10.1002/adfm.200801130

    Article  Google Scholar 

  • Huang Y, Liu S, Lin Z et al (2012) Facile synthesis of palladium nanoparticles encapsulated in amine-functionalized mesoporous metal–organic frameworks and catalytic for dehalogenation of aryl chlorides. J Catal 292:111–117. doi:10.1016/j.jcat.2012.05.003

    Article  Google Scholar 

  • Jin Y, Shi J, Zhang F et al (2014) Synthesis of sulfonic acid-functionalized MIL-101 for acetalization of aldehydes with diols. J Mol Catal A 383-384:167–171. doi:10.1016/j.molcata.2013.12.005

    Article  Google Scholar 

  • Juan-Alcañiz J, Gielisse R, Lago AB et al (2013) Towards acid MOFs—catalytic performance of sulfonic acid functionalized architectures. Catal Sci Technol 3:2311–2318. doi:10.1039/C3CY00272A

    Article  Google Scholar 

  • Kim SN, Yang ST, Kim J et al (2012) Post-synthesis functionalization of MIL-101 using diethylenetriamine: a study on adsorption and catalysis. Cryst Eng Comm 14:4142–4147. doi:10.1039/C2CE06608d

    Article  Google Scholar 

  • Lee JM, Na Y, Han H et al (2004) Cooperative multi-catalyst systems for one-pot organic transformations. Chem Soc Rev 33:302. doi:10.1002/chin.200437263

    Article  Google Scholar 

  • Li B, Zhang Y, Ma D et al (2012) A strategy toward constructing a bifunctionalized MOF catalyst: post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites. Chem Commun 48:6151–6153. doi:10.1039/c2cc32384b

    Article  Google Scholar 

  • Matthews WS, Bares JE, Bartmess JE et al (1975) Equilibrium acidities of carbon acids. VI. Establishment of an absolute scale of acidities in dimethyl sulfoxide solution. J Am Chem Soc 26:7006–7013. doi:10.1021/ja00857a010

    Article  Google Scholar 

  • Meng T, Mao D, Guo Q et al (2012) The effect of crystal sizes of HZSM-5 zeolites in ethanol conversion to propylene. Catal Commun 21:52–57. doi:10.1016/j.catcom.2012.01.030

    Article  Google Scholar 

  • Merino E, Verde-Sesto E, Maya EM et al (2013) Synthesis of structured porous polymers with acid and basic sites and their catalytic application in cascade-type reactions. Chem Mater 25:981–988. doi:10.1021/cm400123d

    Article  Google Scholar 

  • Mueller U, Schubert M, Teich F et al (2006) Metal–organic frameworks—prospective industrial applications. J Mater Chem 16:626–636. doi:10.1002/chin.200623294

    Article  Google Scholar 

  • Ohashi M, Kapoorza MP, Inagaki S (2008) Chemical modification of crystal-like mesoporous phenylene-silica with amino group. Chem Commun 7:841–843. doi:10.1039/B716141G

    Article  Google Scholar 

  • Rana S, Maddila S, Pagadala R et al (2015) Synthesis and characterization of novel bifunctional mesoporous silica catalyst and its scope for one-pot deacetalization–Knoevenagel reaction. J Porous Mater 22:353–360. doi:10.1007/s10934-014-9903-7

    Article  Google Scholar 

  • Shang F, Sun J, Wu S et al (2010) Direct synthesis of acid–base bifunctional mesoporous MCM-41 silica and its catalytic reactivity in deacetalization–Knoevenagel reactions. Micro Meso Mater 134:44–50. doi:10.1016/j.micromeso.2010.05.005

    Article  Google Scholar 

  • Shinde DB, Kandambeth S, Pachfule P et al (2015) Bifunctional covalent organic frameworks with two dimensional organocatalytic micropores. Chem Commun 51:310–313. doi:10.1039/C4CC07104B

    Article  Google Scholar 

  • Toyao T, Fujiwaki M, Horiuchi Y et al (2013) Application of an amino-functionalised metal–organic framework: an approach to a one-pot acid–base reaction. RSC Adv 3:21582–21587. doi:10.1039/c3ra44701d

    Article  Google Scholar 

  • Wang D, Li Z (2015) Bi-functional NH2-MIL-101(Fe) for one-pot tandem photo-oxidation/Knoevenagel condensation between aromatic alcohols and active methylene compounds. Catal Sci Technol 5:1623–1628. doi:10.1039/C4CY01464B

    Article  Google Scholar 

  • Wang W, Huang Y, Lina Z et al (2014) Phosphotungstic acid encapsulated in the mesocages of amine-functionalized metal–organic frameworks for catalytic oxidative desulfurization. Dalton Trans 43:11950–11958. doi:10.1039/C4DT01043D

    Article  Google Scholar 

  • Wasilke JC, Obrey SJ, Baker RT et al (2005) Concurrent tandem catalysis. Chem Rev 105:1001. doi:10.1002/chin.200526258

    Article  Google Scholar 

  • Zang Y, Shi J, Zhang F et al (2013) Sulfonic acid-functionalized MIL-101 as a highly recyclable catalyst for esterification. Catal Sci Technol 3:2044–2049. doi:10.1039/C3CY00044C

    Article  Google Scholar 

  • Zeidan RK, Hwang SJ, Davis ME (2006) Multifunctional heterogeneous catalysts: SBA-15-containing primary amines and sulfonic acids. Angew Chem Int Ed 45:6332–6335. doi:10.1002/ange.200602243

    Article  Google Scholar 

  • Zhang F, Jiang H, Li X et al (2014a) Amine-functionalized GO as an active and reusable acid–base bifunctional catalyst for one-pot cascade reactions. ACS Catal 4:394–401. doi:10.1021/cs400761r

    Article  Google Scholar 

  • Zhang D, Ye F, Guan Y et al (2014b) Hydrogenation of g-valerolactone in ethanol over Pd nanoparticles supported on sulfonic acid functionalized MIL-101. RSC Adv 4:39558–39564. doi:10.1039/C4RA05250A

    Article  Google Scholar 

  • Zhang Y, Li B, Ma S (2014c) Dual functionalization of porous aromatic frameworks as a new platform for heterogeneous cascade catalysis. Chem Commun 50:8507–8510. doi:10.1039/C4CC04012K

    Article  Google Scholar 

  • Zhang F, Jin Y, Fu Y et al (2015) Palladium nanoparticles incorporated within sulfonic acid-functionalized MIL-101(Cr) for efficient catalytic conversion of vanillin. J Mater Chem A 3:17008–17015. doi:10.1039/C5TA03524D

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Yuecheng Zhang in N2 adsorption-desorption experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ligong Chen.

Ethics declarations

Funding

Financial support was provided by the National Natural Science Foundation of China (Grant No. 21576194).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, M., Yan, X., Li, Y. et al. Post-modified acid-base bifunctional MIL-101(Cr) for one-pot deacetalization-Knoevenagel reaction. J Nanopart Res 19, 148 (2017). https://doi.org/10.1007/s11051-017-3844-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3844-4

Keywords

Navigation