Skip to main content
Log in

Supported Au/MIL-53(Al): a reusable green solid catalyst for the three-component coupling reaction of aldehyde, alkyne, and amine

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

MIL-53(Al) was synthesized in a mixture of aluminum nitrate, 1,4-benzenedicarboxylic acid, and water using the hydrothermal and reflux methods. A metal–organic-framework-supported Au-based heterogeneous catalyst (Au/MIL-53(Al)) was prepared using the impregnation method under mild conditions with HAuCl4·4H2O as the Au precursors. The physicochemical properties of the samples were characterized by X-ray diffraction (XRD), infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TG), transmission electron microscopy (TEM), and inductively coupled plasma atomic emission spectroscopy (ICP–AES). MIL-53(Al) indicates excellent chemical stability without structure degradation during the loading and catalysis process. The XPS spectra indicate that the catalyst Au/MIL-53(Al) contains coexisting Au0 and Au3+ ions. The catalytic performance of the catalyst was examined in one-pot synthesis of structurally divergent propargylamines via three component coupling of aldehyde, alkyne, and amine (A3) in 1,4-dioxane. The results showed that the catalyst Au/MIL-53(Al) displayed high activity without any additives or an inert atmosphere (the yield reached 97.9 % for 5 h at 120 °C). Au/MIL-53(Al) has proven to be applicable to a wide range of substrates. Various aromatic/aliphatic aldehydes, aromatic alkynes, and piperidine were able to undergo A3 coupling on the catalyst Au/MIL-53(Al). In addition, the catalyst could be recovered easily by centrifugation and reused three times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Liu LL, Zhang X, Gao JS, Xu CM (2012) Green Chem 14:1710–1720

    Article  CAS  Google Scholar 

  2. Li P, Wang L (2007) Tetrahedron 63:5455–5459

    Article  CAS  Google Scholar 

  3. Choudary BM, Sridhar C, Kantam ML, Sreedhar B (2004) Tetrahedron Lett 5:7319–7321

    Article  Google Scholar 

  4. Imada Y, Yuassa M, Nakamura SI, Murahashi SI (1994) J Org Chem 59:2282–2284

    Article  CAS  Google Scholar 

  5. Dyatkin AB, Rivero RA (1998) Tetrahedron Lett 39:3647–3650

    Article  CAS  Google Scholar 

  6. Shabbir S, Lee Y, Rhee H (2015) J Catal 322:104–108

    Article  CAS  Google Scholar 

  7. Bhuyan D, Saikia M, Saikia L (2015) Catal Commun 58:158–163

    Article  CAS  Google Scholar 

  8. Srinivas V, Koketsu M (2013) Tetrahedron 69:8025–8033

    Article  CAS  Google Scholar 

  9. Blay G, Monleón A, Pedro JR (2009) Curr Org Chem 13:1498–1539

    Article  CAS  Google Scholar 

  10. Zhang X, Corma A (2008) Angew Chem Int Ed 47:4358–4361

    Article  Google Scholar 

  11. Kidwai M, Bansal V, Kumar A, Mozumdar S (2007) Green Chem 9:742–745

    Article  CAS  Google Scholar 

  12. Borah BJ, Borah SJ, Saikia K, Dutta DK (2014) Catal Sci Technol 4(11):4001–4009

    Article  CAS  Google Scholar 

  13. Nasrollahzadeh M, Sajadi SM (2015) RSC Adv 5(57):46240–46246

    Article  CAS  Google Scholar 

  14. Villaverde G, Corma A, Iglesias M, Sánchez F (2012) ACS Catal 2(3):399–406

    Article  CAS  Google Scholar 

  15. Lo VKY, Liu Y, Wong MK, Che CM (2006) Org Lett 8:1529–1532

    Article  CAS  Google Scholar 

  16. Wei C, Li Z, Li CJ (2003) Org Lett 5:4473–4475

    Article  CAS  Google Scholar 

  17. Palchak ZL, Lussier DJ, Pierce CJ, Larsen CH (2015) Green Chem 17(3):1802–1810

    Article  CAS  Google Scholar 

  18. Hua P, Lei W (2005) Chin J Chem 23(8):1076–1080

    Article  Google Scholar 

  19. Li CJ, Wei C (2002) Chem Commun 3:268–269

    Article  Google Scholar 

  20. Zhang X, Corma A (2007) Chem Commun 29:3080–3082

    Article  Google Scholar 

  21. GonzKlez-Arellano C, Corma A, Iglesias M, Sknchez F (2006) J Catal 238:497–501

    Article  Google Scholar 

  22. Gorin DJ, Toste FD (2007) Nature 446:395–403

    Article  CAS  Google Scholar 

  23. Widenhoefer RA, Han X (2006) Eur J Org Chem 20:4555–4563

    Article  Google Scholar 

  24. Liu LL, Zhang X, Gao JS, Xu CM (2012) Chin J Catal 33(5):833–841

    Google Scholar 

  25. Ishida T, Haruta M (2007) Angew Chem Int Ed 46:7154–7156

    Article  CAS  Google Scholar 

  26. Zhang X, Xamena FXL, Corma A (2009) J Catal 265:155–160

    Article  CAS  Google Scholar 

  27. Zhang ZX, Ding NN, Zhang WH, Chen JX, Young DJ, Hor TSA (2014) Angew Chem Int Ed 53(18):4628–4632

    Article  CAS  Google Scholar 

  28. Horike SM, Dincă K, Tamaki K, Long GR (2008) J Am Chem Soc 130:5854–5855

    Article  CAS  Google Scholar 

  29. Liu LL, Zhang X, Rang SM, Yang Y, Dai XP, Gao JS, Xu CM, He J (2014) RSC Adv 4:13093–13107

    Article  CAS  Google Scholar 

  30. Wu XF, Bao ZB, Yuan B, Wang J, Sun YQ, Luo HM, Deng SG (2013) Micropor Mesopor Mat 180:114–122

    Article  CAS  Google Scholar 

  31. Li B, Wen HM, Zhou W, Chen BL (2014) J Phys Chem Lett 5:3468–3479

    Article  CAS  Google Scholar 

  32. Dang GH, Dang TT, Le DT, Truong T, Phan NTS (2014) J Catal 319:258–264

    Article  CAS  Google Scholar 

  33. Duan CJ, Jie XM, Liu DD, Cao YM, Yuan Q (2014) J Membr Sci 466:92–102

    Article  CAS  Google Scholar 

  34. Yoona M, Moonb D (2015) Micropor Mesopor Mat 215:116–122

    Article  Google Scholar 

  35. Banerjee M, Das S, Yoon M, Choi HJ, Hyun MH, Park SM, Seo G, Kim KJ (2009) J Am Chem Soc 131:7524–7525

    Article  CAS  Google Scholar 

  36. Wu CD, Hu A, Zhang L, Lin W (2005) J Am Chem Soc 127:8940–8941

    Article  CAS  Google Scholar 

  37. Cho SH, Ma B, Nguyen ST, Hupp JT, Albrecht-Schmitt TE (2006) Chem Commun 24(45):2563–2565

    Article  Google Scholar 

  38. Wu CD, Lin W (2007) Angew Chem Int Ed 46:1075–1078

    Article  CAS  Google Scholar 

  39. Pera-Titus M, Savonnet M, Farrusseng D (2010) J Phys Chem C 114(41):17665–17674

    Article  CAS  Google Scholar 

  40. Guillou N, Livage C, Drillon M, Férey G (2003) Angew Chem Int Ed 42:5314–5317

    Article  CAS  Google Scholar 

  41. Devic T, Serre C, Auderbrand N, Marrot J, Férey G (2005) J Am Chem Soc 127(37):12788–12789

    Article  CAS  Google Scholar 

  42. Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I (2005) Science 309(5743):2040–2042

    Article  Google Scholar 

  43. Serre C, Mellot-Draznieks C, Surble S, Audebrand N, Filinchuk Y, Férey G (2007) Science 315(5820):1828–1831

    Article  CAS  Google Scholar 

  44. An Y, Li HL, Liu YY, Huang BB, Sun QL, Dai Y, Qin XY, Zhang XY (2016) J Solid State Chem 233:194–198

    Article  CAS  Google Scholar 

  45. Fateeva A, Chater PA, Ireland CP, Tahir AA, Khimyak YZ, Wiper PV, Darwent JA, Rosseinsky MJ (2012) Angew Chem Int Ed 51:7440–7444

    Article  CAS  Google Scholar 

  46. Yan JL, Jiang S, Ji SF, Shi D, Cheng HF (2015) Sci China Chem 58(10):1544–1552

    Article  CAS  Google Scholar 

  47. Li ZH, Wu YN, Li J, Zhang YM, Zou X, Li FT (2015) Chem Eur J 21:6913–6920

    Article  CAS  Google Scholar 

  48. Couck S, Denayer JF, Baron GV, Rmy T, Gascon J, Kapteijn F (2009) J Am Chem Soc 131:6326–6327

    Article  CAS  Google Scholar 

  49. Tan ZD, Tan HY, Shi XY, Ji Z, Yan YF, Zhou Y (2015) Inorg Chem Commun 61:128–131

    Article  CAS  Google Scholar 

  50. Tan HY, Wu JP (2014) Acta Phys-Chim Sin 30(4):715–722

    Google Scholar 

  51. Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Férey G (2004) Chem Eur J 10:1373–1382

    Article  CAS  Google Scholar 

  52. Liu Y, Her JH, Dailly A, Ramirez-Cuesta AJ, Neumann DA, Brown CM (2008) J Am Chem Soc 130:11813–11818

    Article  CAS  Google Scholar 

  53. Hamon L, Serre C, Devic T, Loiseau T, Millange F, Férey G, Weireld GD (2009) J Am Chem Soc 131:8775–8777

    Article  CAS  Google Scholar 

  54. Lian Q, Zhao Z, Liu J, Wei YC, Jiang GY, Duan AJ (2014) Acta Phys Chin Sin 30(1):129–134

    Google Scholar 

  55. Zhang F, Zou XQ, Sun FX, Ren H, Jiang Y, Zhu GS (2012) CrystEngComm 14:5487–5492

    Article  CAS  Google Scholar 

  56. Volkringer C, Loiseau T, Guillou N, Férey G, Elkaim E, Vimont A (2009) Dalton Trans 12(12):2241–2249

    Article  Google Scholar 

  57. Stavitski E, Pidko EA, Couck S, Remy T, Hensen EJM, Bert M, Weckhuysen BM, Denayer J, Gascon J, Kapteijn F (2011) Langmuir 27:3970–3976

    Article  CAS  Google Scholar 

  58. Meilikhov M, Yusenko K, Roland A, Fischer RA (2010) Dalton Trans 39:10990–10999

    Article  CAS  Google Scholar 

  59. Horcajada P, Serre C, Maurin G, Ramsahye NA, Balas F, Vallet-Reqí M, Sebban M, Taulelle F, Férey G (2008) J Am Chem Soc 130(21):6774–6780

    Article  CAS  Google Scholar 

  60. Zhang X, Shi H, Xu BQ (2007) Catal Today 122(3–4):330–337

    Article  CAS  Google Scholar 

  61. Hutchings GJ, Hall MS, Carley AF, Landon P, Solsona BE, Kiely CJ, Herzing A, Makkee M, Moulijn JA, Overweg A, Fierro-Gonzalez JC, Gates BC (2006) J Catal 242(1):71–81

    Article  CAS  Google Scholar 

  62. Zhang X, Shi H, Xu BQ (2005) Angew Chem Int Ed 44:7132–7135

    Article  CAS  Google Scholar 

  63. Casaletto MP, Longo A, Martorana A, Prestianni A, Venezia AM (2006) Surf Interface Anal 38:215–218

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Promotive Research Fund for Young and Middle-aged Scientists of Shandong Province (BS2014CL021, BS2015CL012), the National Natural Science Foundation of Shandong (ZR2014BL003, ZR2015BM005), the Project of Shandong Province Higher Educational Science and Technology Program (J14LC01, J15LA09), and the Technology Research and Development Program of Weifang (201301035, 2015GX003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xishi Tai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Tai, X., Zhang, N. et al. Supported Au/MIL-53(Al): a reusable green solid catalyst for the three-component coupling reaction of aldehyde, alkyne, and amine. Reac Kinet Mech Cat 119, 335–348 (2016). https://doi.org/10.1007/s11144-016-1034-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1034-5

Keywords

Navigation