Skip to main content
Log in

Synthesis of SAPO-56 with controlled crystal size

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Herein, we present the hydrothermal synthesis of SAPO-56 crystals with relatively controlled crystal/particle size. The effects of water content, aluminum source, gel composition, stirring, crystallization temperature and time, as well as the incorporation of crystal growth inhibitors during synthesis were systematically investigated. The synthesized SAPO-56 crystals displayed BET surface areas as high as ∼630 m2 g−1 with relative narrow size distribution in the ∼5–60 μm range. Nitrogen BET surface areas in the 451 to 631 m2 g−1 range were observed. Decreasing the crystallization temperature from 220 to 210 °C helped to decrease the average SAPO-56 crystal size. Diluted gel compositions promoted the formation of smaller crystals. Crystal growth inhibitors were found to be helpful in reducing crystal size and narrow the size distribution. Specifically, ∼5 μm SAPO-56 crystals displaying narrow size distribution were synthesized employing aluminum-tri-sec-butoxide as Al source, high water content, and high stirring rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Askari S, Halladj R (2012) Ultrasonic pretreatment for hydrothermal synthesis of SAPO-34 nanocrystals. Ultrason Sonochem 19(3):554–559

    Article  Google Scholar 

  • Bacsik Z, Cheung O, Vasiliev P, Hedin N (2016) Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56. Appl Energ 162:613–621

    Article  Google Scholar 

  • Bhat SD, Niphadkar PS, Gaydhankar TR, Awate SV, Belhekar AA, Joshi PN (2004) High temperature hydrothermal crystallization, morphology and yield control of zeolite type K-LTL. Micropor Mesopor Mat 76(1):81–89

    Article  Google Scholar 

  • Carreon MA, Li S, Falconer JL, Noble RD (2008) Alumina-supported SAPO-34 membranes for CO2/CH4 separation. J Am Chem Soc 130(16):5412–5413

    Article  Google Scholar 

  • Cheung O, Liu Q, Bacsik Z, Hedin N (2012) Silicoaluminophosphates as CO2 sorbents. Micropor Mesopor Mat 156:90–96

    Article  Google Scholar 

  • Cho K, Kim D, Yoon S (2003) Effect of substrate surface energy on transcrystalline growth and its effect on interfacial adhesion of semicrystalline polymers. Macromolecules 36(20):7652–7660

    Article  Google Scholar 

  • Corma A, Diaz-Cabanas MJ, Martínez-Triguero J, Rey F, Rius J (2002) A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature 418(6897):514–517

    Article  Google Scholar 

  • Ćurković L, Cerjan-Stefanović Š, Filipan T (1997) Metal ion exchange by natural and modified zeolites. Water Res 31(6):1379–1382

    Article  Google Scholar 

  • Di Renzo F (1998) Zeolites as tailor-made catalysts: control of the crystal size. Catal Today 41(1):37–40

    Article  Google Scholar 

  • Feng X, Carreon MA (2015) Kinetics of transformation on ZIF-67 crystals. J Cryst Growth 418:158–162

    Article  Google Scholar 

  • Feng X, Wu T, Carreon MA (2016) Synthesis of ZIF-67 and ZIF-8 crystals using DMSO (dimethyl sulfoxide) as solvent and kinetic transformation studies. J Cryst Growth 455:152–156

    Article  Google Scholar 

  • Inglezakis VJ (2005) The concept of “capacity” in zeolite ion-exchange systems. J Colloid Interf Sci 281(1):68–79

    Article  Google Scholar 

  • Jeon HY, Shin CH, Jung HJ, Hong SB (2006) Catalytic evaluation of small-pore molecular sieves with different framework topologies for the synthesis of methylamines. Appl Catal-A: Gen 305(1):70–78

    Article  Google Scholar 

  • Lai Z, Bonilla G, Diaz I, Nery JG, Sujaoti K, Amat MA, Vlachos DG (2003) Microstructural optimization of a zeolite membrane for organic vapor separation. Science 300(5618):456–460

    Google Scholar 

  • Li J, Jin X, Duan H, Ji N, Song C, Liu Q (2015) Synthesis of NH3-SCR catalyst SAPO-56 with different aluminum sources. Procedia Eng 121:967–974

    Article  Google Scholar 

  • Liu G, Tian P, Li J, Zhang D, Zhou F, Liu Z (2008) Synthesis, characterization and catalytic properties of SAPO-34 synthesized using diethylamine as a template. Micropor Mesopor Mat 111:143–149

    Article  Google Scholar 

  • Roldán R, Sánchez-Sánchez M, Sankar G, Romero-Salguero FJ, Jiménez-Sanchidrián C (2007) Influence of pH and Si content on Si incorporation in SAPO-5 and their catalytic activity for isomerisation of n-heptane over Pt loaded catalysts. Micropor Mesopor Mat 99(3):288–298

    Article  Google Scholar 

  • Siriwardane RV, Shen MS, Fisher EP, Losch J (2005) Adsorption of CO2 on zeolites at moderate temperatures. Energy Fuel 19(3):1153–1159

    Article  Google Scholar 

  • Tago T, Konno H, Nakasaka Y, Masuda T (2012) Size-controlled synthesis of nano-zeolites and their application to light olefin synthesis. Catal Surv Jpn 16(3):148–163

    Article  Google Scholar 

  • Thomas HC (1944) Heterogeneous ion exchange in a flowing system. J Am Chem Soc 66(10):1664–1666

    Article  Google Scholar 

  • Van Grieken R, Sotelo JL, Menendez JM, Melero JA (2000) Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5. Micropor Mesopor Mat 39(1):135–147

    Article  Google Scholar 

  • Venna SR, Carreon MA (2008) Synthesis of SAPO-34 crystals in the presence of crystal growth inhibitors. J Phys Chem B 112(51):16261–16265

    Article  Google Scholar 

  • Venna SR, Carreon MA (2009) Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. J Am Chem Soc 132(1):76–78

    Article  Google Scholar 

  • Venna, SR, Jasinski JB, Carreon, MA (2010) Structural evolution of zeolitic imidazolate framework-8 Journal of the American Chemical Society 132, 18030–18033.

  • Wei Y, He Y, Zhang D, Xu L, Meng S, Liu Z, Su BL (2006) Study of Mn incorporation into SAPO framework: synthesis, characterization and catalysis in chloromethane conversion to light olefins. Micropor Mesopor Mat 90(1):188–197

    Article  Google Scholar 

  • Weitkamp J (2000) Zeolites and catalysis. Solid State Ionics 131(1):175–188

    Article  Google Scholar 

  • Wilson ST (1995) U.S. Patent No. 5,437,781. Washington, DC: U.S. Patent and Trademark Office

  • Wilson ST, McGuire NK, Blackwell CS, Bateman CA, Kirchner RM, in: Karge HG , Weitkamp J (Eds.) (1994) Zeolite science: recent progress and discussions. Stud Surf Sci Catal 98(1995):9

  • Wilson ST, Broach RW, Blackwell CS, Bateman CA, McGuire NK, Kirchner RM (1999) Synthesis, characterization and structure of SAPO-56, a member of the ABC double-six-ring family of materials with stacking sequence AABBCCBB. Micropor Mesopor Mat 28(1):125–137

    Article  Google Scholar 

  • Xie Z, Zhu M, Nambo A, Jasinski JB, Carreon MA (2013) Microwave-assisted synthesized SAPO-56 as a catalyst in the conversion of CO2 to cyclic carbonates. Dalton T 42(19):6732–6735

    Article  Google Scholar 

Download references

Acknowledgements

M. A. Carreon thanks Coors Foundation for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moises A. Carreon.

Ethics declarations

Funding

This study was funded by Coors Foundation.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCM 6013 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Feng, X., Carreon, M.L. et al. Synthesis of SAPO-56 with controlled crystal size. J Nanopart Res 19, 93 (2017). https://doi.org/10.1007/s11051-017-3772-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3772-3

Keywords

Navigation