Skip to main content
Log in

Control of Ostwald ripening

奥斯瓦尔德熟化过程的控制

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

As a thermodynamic process, Ostwald ripening is inevitable in solid solution or liquid sol, which usually leads to inhomogeneous morphologies and poor particle size distributions. For decades, how to prevent or control Ostwald ripening has been a challenge in material preparation, especially for obtaining excellent nanomaterials. Here, we propose two important concepts, critical concentration and time window, as the keys to inhibit Ostwald ripening occurring over a fairly long time. A series of precise controls were performed in preparing NaREF4 nanomaterials by using an automatic nanomaterial synthesizer to explore the regularity in Ostwald ripening. Our results exhibit that Oswald ripening processes could be controlled exactly, which provides an effective approach for the controllable synthesis of NaREF4 nanocrystals. By controlling Oswald ripening, we have not only achieved high-quality nanocrystals but also developed a strategy for core-shell preparations. Given the ubiquity of Oswald ripening, this method can be applied to many preparation processes.

摘要

作为一种热力学的必然过程, 奥斯瓦尔德熟化通常会发生在材料生长的后期阶段, 并导致材料的性能参数变差. 几十年来, 如何阻止或控制奥斯瓦尔德熟化一直是材料制备领域的一个挑战. 尤其在纳米材料制备中, 奥斯瓦尔德熟化已经成为了获得优良材料的一大障碍. 在大量实验和分析的基础上, 本文发现临界浓度和时间窗口是阻止和抑 制奥斯瓦尔德熟化发生的两个关键因素. 我们利用全自动纳米材料合成仪, 对制备NaREF4纳米材料的过程进行一系列精确控制, 探明了奥斯瓦尔德熟化的规律, 将熟化划分为三种类型. 通过控制奥斯瓦尔德熟化的发生, 不仅获得了高质量的纳米晶体, 而且还开发了核-壳纳米材料制备策略. 考虑到奥斯瓦尔德熟化的普遍性, 这种方法可以应用于许多纳米材料的制备过程.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McNaught AD, Wilkinson A. Compendium of Chemical Terminology. 2nd ed. Paris: IUPAC, 1997

    Google Scholar 

  2. Ng JD, Lorber B, Witz J, et al. The crystallization of biological macromolecules from precipitates: Evidence for Ostwald ripening. J Cryst Growth, 1996, 168: 50–62

    Article  CAS  Google Scholar 

  3. McClements DJ, Henson L, Popplewell LM, et al. Inhibition of Ostwald ripening in model beverage emulsions by addition of poorly water soluble triglyceride oils. J Food Sci, 2012, 77: C33–C38

    Article  CAS  Google Scholar 

  4. Medeiros-Ribeiro G, Bratkovski AM, Kamins TI, et al. Shape transition of germanium nanocrystals on a silicon (001) surface from pyramids to domes. Science, 1998, 279: 353–355

    Article  CAS  Google Scholar 

  5. Ratke L, Voorhees W. Growth and Coarsening: Ostwald Ripening in Material Processing. Berlin: Springer, 2002

    Book  Google Scholar 

  6. Kahlweit M. Ostwald ripening of precipitates. Adv Colloid Interface Sci, 1975, 5: 1–35

    Article  CAS  Google Scholar 

  7. Mock A. Using quantitative textural analysis to understand the emplacement of shallow-level rhyolitic laccoliths—A case study from the Halle volcanic complex, Germany. J Petrol, 2003, 44: 833–849

    Article  CAS  Google Scholar 

  8. Ostwald W. Lehrbuch der Allgemeinen Chemie. Leipzig: Leipzig Press, 1896

    Google Scholar 

  9. Ostwald W. Studien über die Bildung und Umwandlung fester Körper. Zeitschrift für Physikalische Chem, 1897, 22U: 289–330

    Article  Google Scholar 

  10. Johnson NJJ, Korinek A, Dong C, et al. Self-focusing by Ostwald ripening: A strategy for layer-by-layer epitaxial growth on upconverting nanocrystals. J Am Chem Soc, 2012, 134: 11068–11071

    Article  CAS  Google Scholar 

  11. Zhang Z, Wang Z, He S, et al. Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals. Chem Sci, 2015, 6: 5197–5203

    Article  CAS  Google Scholar 

  12. Ali RF, Gates BD. Synthesis of lithium niobate nanocrystals with size focusing through an Ostwald ripening process. Chem Mater, 2018, 30: 2028–2035

    Article  CAS  Google Scholar 

  13. Rinkel T, Nordmann J, Raj AN, et al. Ostwald-ripening and particle size focussing of sub-10 nm NaYF4 upconversion nanocrystals. Nanoscale, 2014, 6: 14523–14530

    Article  CAS  Google Scholar 

  14. Chatterjee DK, Gnanasammandhan MK, Zhang Y. Small upconverting fluorescent nanoparticles for biomedical applications. Small, 2010, 6: 2781–2795

    Article  CAS  Google Scholar 

  15. Shalav A, Richards BS, Trupke T, et al. Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Appl Phys Lett, 2005, 86: 013505

    Article  Google Scholar 

  16. Heer S, Kömpe K, Güdel HU, et al. Highly efficient multicolour up-conversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv Mater, 2004, 16: 2102–2105

    Article  CAS  Google Scholar 

  17. Ostrowski AD, Chan EM, Gargas DJ, et al. Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped up-converting nanocrystals. ACS Nano, 2012, 6: 2686–2692

    Article  CAS  Google Scholar 

  18. Wang X, Li Y. Fullerene-like rare-earth nanoparticles. Angew Chem Int Ed, 2003, 42: 3497–3500

    Article  CAS  Google Scholar 

  19. Yi GS, Chow G M. Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. Adv Funct Mater, 2006, 16: 2324–2329

    Article  CAS  Google Scholar 

  20. Mai HX, Zhang YW, Si R, et al. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J Am Chem Soc, 2006, 128: 6426–6436

    Article  CAS  Google Scholar 

  21. Li Y, Dong Y, Aidilibike T, et al. Growth phase diagram and upconversion luminescence properties of NaLuF4:Yb3+/Tm3+/Gd3+ nanocrystals. RSC Adv, 2017, 7: 44531–44536

    Article  CAS  Google Scholar 

  22. Jia H, Li D, Zhang D, et al. High color-purity red, green, and blue-emissive core-shell upconversion nanoparticles using ternary near-infrared quadrature excitations. ACS Appl Mater Interface, 2021, 13: 4402–4409

    Article  CAS  Google Scholar 

  23. Zhang D, Dong Y, Li D, et al. Growth regularity and phase diagrams of NaLu0.795−xYxF4 upconversion nanocrystals synthesized by automatic nanomaterial synthesizer. Nano Res, 2021, 14: 4760–4767

    Article  CAS  Google Scholar 

  24. Fischer S, Swabeck JK, Alivisatos AP. Controlled isotropic and anisotropic shell growth in β-NaLnF4 nanocrystals induced by precursor injection rate J Am Chem Soc, 2017, 139: 12325–12332

    Article  CAS  Google Scholar 

  25. Ni B, González-Rubio G, Kirner F, et al. A symmetry-based kinematic theory for nanocrystal morphology design Angew Chem Int Ed, 2022, 61: e202200753

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12174150), the Opened Fund of the State Key Laboratory on Integrated Optoelectronics, Tsinghua National Laboratory for Information Science and Technology (TNList) Cross-Discipline Foundation, and the Major Science and Technology Tendering Project of Jilin Province (20170203012GX).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Dong Y carried out the sample design and synthesis, data analysis, and prepared the manuscript. Zhang D collected the TEM data. Jia H collected the XRD data. Li D collected the spectral data. Qin W conceived and supervised the project and revised the manuscript. All authors participated in the discussion of the results.

Corresponding author

Correspondence to Weiping Qin  (秦伟平).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Yanhui Dong is a PhD candidate in Prof. Weiping Qin’s group at the State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University. Her current research focuses on rare-earth luminescent nanomaterials.

Weiping Qin is a full professor at the College of Electronic Science and Engineering, Jilin University His current research interests include advanced photonics materials and devices, rare-earth luminescent nanomaterials, solid-state luminescence optics, and scientific theory and application of trungscin.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Zhang, D., Li, D. et al. Control of Ostwald ripening. Sci. China Mater. 66, 1249–1255 (2023). https://doi.org/10.1007/s40843-022-2233-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2233-3

Keywords

Navigation