Skip to main content
Log in

Key physicochemical properties of nanomaterials in view of their toxicity: an exploratory systematic investigation for the example of carbon-based nanomaterial

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Currently, a noncomprehensive understanding of the physicochemical properties of carbon-based nanomaterial (CBNs), which may affect toxic effects, is still observable. In this study, an exploratory systematic investigation into the key physicochemical properties of multiwall carbon nanotube (MWCNT), single-wall carbon nanotube (SWCNT), and C60-fullerene on their ecotoxicity has been undertaken. We undertook an extensive survey of the literature pertaining to the ecotoxicity of organism representative of the trophic level of algae, crustaceans, and fish. Based on this, a set of data reporting both the physicochemical properties of carbon-based nanomaterial and the observed toxic effect has been established. The relationship between physicochemical properties and observed toxic effect was investigated based on various statistical approaches. Specifically, analysis of variance by one-way ANOVA was used to assess the effect of categorical properties (use of a dispersant or treatments in the test medium, type of carbon-based nanomaterial, i.e., SWCNT, MWCNT, C60-fullerene, functionalization), while multiple regression analysis was used to assess the effect of quantitative properties (i.e., diameter length of nanotubes, secondary size) on the toxicity values. The here described investigations revealed significant relationships among the physicochemical properties and observed toxic effects. The research was mainly affected by the low availability of data and also by the low variability of the studies collected. Overall, our results demonstrate that the here proposed and applied approach could have a major role in identifying the physicochemical properties of relevance for the toxicity of nanomaterial. However, the future success of the approach would require that the ENMs and the experimental conditions used in the toxicity studies are fully characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alloy MM, Roberts AP (2011) Effects of suspended multi-walled carbon nanotubes on daphnid growth and reproduction. Ecotoxicol Environ Saf 74(7):1839–1843

    Article  Google Scholar 

  • Arndt DA, Moua M, Chen J, Klaper RD (2013) Core structure and surface functionalization of carbon nanomaterials alter impacts to daphnid mortality, reproduction, and growth: acute assays do not predict chronic exposure impacts. Environ Sci Technol 47(16):9444–9452

    Article  Google Scholar 

  • Arts JH-E, Hadi M, Irfan MF, Keene AM, Kreiling R et al (2015) A decision-making frameworj for the gruoping and testing of nanomaterials (DF4nanoGruoping). Regul Toxicol Pharmacol 71(2):s1–s27

    Article  Google Scholar 

  • Aschberger K, Johnston HJ, Stone V, Aitken RJ, Tran CL et al (2011a) Review of fullerene toxicity and exposure—appraisal of a humna health risk assessment, based on open literature. Regul Toxicol Pharmacol 58:455–473

    Article  Google Scholar 

  • Aschberger K, Micheletti C, Sokull-Kluttgen B, Christensen FM (2011b) Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health – lessons learned from four case studies. Environ Int 37:1143–1156

    Article  Google Scholar 

  • Asharani PV, Serina NGB, Nurmawati MH, Wu YL, Gong Z, Valiyveettil S (2008) Impact of multi-walled carbon nanotubes on aquatic species. J Nanosci Nanotechnol 8(7):3603–3609

  • Cheng J, Cheng SH (2012) Influence of carbon nanotube length on toxicity to zebrafish embryos. Int J Nanomedicine 7:3731–3739

    Article  Google Scholar 

  • Cheng J, Flahaut E, Cheng SH (2007) Effect on carbon nanotubes on developing zebrafish (Danio rerio) embryos. Environ Toxicol Chem 26:708–716

    Article  Google Scholar 

  • Coll C, Notter D, Gottschalk F, Sun TY, Som C, Nowack B (2016) Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, fullerenes). Nanotoxicology 10:36–444

    Article  Google Scholar 

  • ECHA (2013) Gruoping of substance and read-across approach -an illustraive example

  • Edgington AJ, Roberts AP, Taylor LM, Alloy MM, Reppert J, Rao AM et al (2010) The influence of natural organic matter on the toxicity of multiwalled carbon nanotubes. Environ Toxicol Chem 29(11):2511–2518

    Article  Google Scholar 

  • Gao J, Llaneza V, Youn S, Silvera-Batista CA, Ziegler KJ, Bonzongo JC (2012) Aqueous suspension methods of carbon-based nanomaterials and biological effects on model aquatic organisms. Environ Toxicol Chem 31:210–214

    Article  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  Google Scholar 

  • Gottschalk F, Sun TY, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300

    Article  Google Scholar 

  • Guarch CP, López DR, Salse JT, Linares JG, Suàrez MB, de Lapuente PJ (2014) Basis for the toxicological evaluation of engineered nanomaterials. Rev Toxicol 31(1):9–22

    Google Scholar 

  • Handy DR, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanopaeticles and nanomaterails: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325

    Article  Google Scholar 

  • Handy DR, Cornelis G, Fernandes T, Tsyusko O, Decho A et al (2012) Ecotoxicity test methods for engineered nanomaterials practicla experiences and recommendations from the bench. Environ Toxicol Chem 31(1):15–31

    Article  Google Scholar 

  • Henry TB, Menn FM, Fleming JT, Wiligus J, Compton RN, Sayler GS (2007) Attributing effects of aqueous C60 nano-aggragtes to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression. Environ Health Perspect 115(7):1059–1065

    Article  Google Scholar 

  • Hischier R (2014) Framework for LCI modelling of releases of manufactured nanomaterials along their life cycle. Int J LCA 19:941–943

    Article  Google Scholar 

  • Hischier R, Walser T (2012) Life cycle assessment of engineered nanomaterials: state of the art and strategies to overcome existing gaps. Sci Total Environ 425:271–282

    Article  Google Scholar 

  • ISO (2006) Environmental management - life cycle assessment - life cycle impact assessment (ISO 14044). ISO, Geneva

    Google Scholar 

  • Jackson P, Jacobsen NR, Baun A et al (2013) Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Cent J 7:154

    Article  Google Scholar 

  • Kapler R, Crago J, Barr J, Arndt D, Setyowati K, Chen J (2009) Toxicity biomarker expression in daphnids exposed to manufactured nanoparticles; changes in toxicity with functionalization. Environ Poll 157:1152–1156

    Article  Google Scholar 

  • Kennedy AJ, Hull MS, Steevens JA, Dontsova KM, Chappell MA, Gunter JC, Weiss CA (2008) Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environ Toxicol Chem 27(9):1932–1941

    Article  Google Scholar 

  • Kennedy AJ, Gunter JC, Chappell MA, Goss JD, Hull MS, Kirgan RA, Steevens JA (2009) Influence of nanotube preparation in aquatic bioassays. Environ Toxicol Chem 28(9):1930–1938

    Article  Google Scholar 

  • Kim KT, Klaine SJ, Lin S, Ke PC, Kim SD (2010) Acute toxicity of a mixture of copper and single-walled carbon nanotubes to Daphnia magna. Environ Toxicol Chem 29(1):122–126

    Article  Google Scholar 

  • Li M, Huang CP (2011) The responses of Ceriodaphnia dubia toward multi-walled carbon nanotubes: effect of physical–chemical treatment. Carbon 49(5):1672–1679

    Article  Google Scholar 

  • Liu Y, Zhao Y, Sun B, Chen C (2013) Understanding the toxicity of carbon nanotubes. Acc Chem Res 46:702–713

    Article  Google Scholar 

  • Long Z, Ji J, Yang K, Lin D, Wu F (2012) Systematic and quantitative investigation of the mechanism of carbon nanotubes toxicity toward algae. Environ Sci Technol 46(15):8458–8466

    Article  Google Scholar 

  • Lovern S, Klaper R (2006) Daphnia magna Mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem 25(4):1132–1137

    Article  Google Scholar 

  • Luo J (2007) Toxicity and bioaccumulation of nanomaterial inaquatic species. JUS SJWP 2:1–16

    Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  Google Scholar 

  • Muzi L, Tardani F, La Mesa C, Bonincontro A, Bianco A, Risuleo G (2016) Interactios and effects of BSA-functionalized single-walled carbon nanotubes on different cell lines. Nanotechnology 1–10

  • Oomen AG, Peter MJ, Fernandes TF, Hund-Rinke K, Boraschi D et al (2014) Concern-driven integrated approaches to nanomaterial testing and assessment – report of the NanoSafety cluster working group 10. Nanotoxicology 8:334–348

    Article  Google Scholar 

  • Park EJ, Lee GH,·Han BS , Lee BS, Lee S, Cho MH, Kim JH, Kim DW (2015) Toxic response of graphene nanoplatelets in vivo and in vitro. Arch Toxicol 89:1557–1568.

    Article  Google Scholar 

  • Pereira MM, Mouton L, Yéprémian C, Couté A, Lo J et al (2014) Ecotoxicological effects of carbon nanotubes and cellulose nanofibers in Chlorella vulgaris. J Nanobiotechnol 12(15):1–13

    Google Scholar 

  • Petersen EJ, Pinto RA, Mai DJ, Landrum PF, Weber WJ (2011) Influence of Polyethyleneimine Graftings of multi-walled carbon nanotubes on their accumulation and elimination by and toxicity to Daphnia magna. Environ Sci Technol 45(3):1133–1138

    Article  Google Scholar 

  • Rivera-GP, Jimenez de Aberasturi D, Wulf V, Pelaz B, Del Pino P et al (2012) The challenge torelate the physicochemial properties of colloidal nanoparticles to their cytotoxicity. Acc Chem Res 46:743–749

    Article  Google Scholar 

  • Roberts AP, Mount AS, Seda B, Souther J, Qiao R et al (2007) In vivo Biomodification of lipid-coated carbon nanotubes by Daphnia magna. Environ Sci Technol 41(8):3025–3029

    Article  Google Scholar 

  • Rosenbaum R, Bachmann T, Gold L, Huijbregts MJ, Jolliet O et al (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J LCA 13(7):532–546

    Article  Google Scholar 

  • Rossi M, Cubadda F, Dini L, Terranova ML, Aurele F, Sorbo A, Passeri D (2014) Scientific basis of nanotechnolgoy, implication for the food sector and future trend. Trend Food Technol 40(2):127–148

    Article  Google Scholar 

  • Schwab F, Bucheli TD, Lukhele LP, Magrez A, Nowack B, Sigg L, Knauer K (2011) Are carbon nanotube effects on green algae caused by shading and agglomeration? Environ Sci Technol 45(14):6136–6144

    Article  Google Scholar 

  • Seda BC, Ke P-C, Mount AS, Klaine SJ (2012) Toxicity of aqueous C70-Gallic acid suspesnion in Daphnia magna. Environ Tox Chem 31:215–220

    Article  Google Scholar 

  • Sohn EK, Chung YS, Johari SA, Kim TG, Kim JK, Lee JH, Lee YH, Kang SW, Yu IJ (2015) Acute toxicity comparison of single-walled carbon nanotubes in various freshwater organisms. Biomed Res Int 2015:323090

    Google Scholar 

  • Subramanian V, Semenzin E, Hristozov D, Zondervan-van den Beuken E, Linkov I, Marcomini A (2015) Review of decision analytic tools for sustainable nanotechnology. Environ Syst Decis 35:29–41

    Article  Google Scholar 

  • Tao X, Fortner JD, Zhang B, He Y, Chen Y, Hughes JB (2009) Effects of aqueous stable fullerene nanocrystals (nC60) on Daphnia magna: evaluation of sub-lethal reproductive responses and accumulation. Chemosphere 77(11):1482–1487

    Article  Google Scholar 

  • Usenko CY, Harper SL, Tanguay RL (2007) In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon NY 45(9):1891–1898

    Article  Google Scholar 

  • Usenko CY, Harper SL, Tanguay RL (2008) Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish. Toxicol Appl Pharmacol 229(1):44–55

    Article  Google Scholar 

  • Valverde LJ, Linkov I (2011) Nanotechnology: risk assessment and risk management perspective. Nanotechnol Law Bus 8:1–23

    Google Scholar 

  • Youn S, Wang R, Gao J, Hovespyan A, Ziegler KJ, Bonzongo JC, Bitton G (2012) Mitigation of the impact of single-walled carbon nanotubes on a freshwater green algae: Pseudokirchneriella subcapitata. Nanotoxicology 6(2):161–172

    Article  Google Scholar 

  • Yan XM, Zha JM, Shi BY et al (2010) In vivo toxicity of nano-C60 aggregates complex with atrazine to aquatic organisms. Chinese Sci Bull 55(4-5):339–345

  • Zhu S, Oberdorster E, Haasch ML (2006) Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res 62(Suppl):S5–S9

    Article  Google Scholar 

  • Zhu X, Zhu L, Chen Y, Tian S (2009) Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J Nanopart Res 11(1):67–75

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union Seventh Framework Programme under grant agreement no. 310184 (CARINHYPH project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Salieri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal studies

This article does not contain any studies with human or animal subjects performed by any of the authors.

Electronic supplementary material

ESM 1

(DOC 380 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salieri, B., Pasteris, A., Netkueakul, W. et al. Key physicochemical properties of nanomaterials in view of their toxicity: an exploratory systematic investigation for the example of carbon-based nanomaterial. J Nanopart Res 19, 116 (2017). https://doi.org/10.1007/s11051-017-3748-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3748-3

Keywords

Navigation