Skip to main content
Log in

Aquatic nanotoxicology: impact of carbon nanomaterials on algal flora

  • Review Paper
  • Published:
Energy, Ecology and Environment Aims and scope Submit manuscript

Abstract

Currently, different nanomaterials are being used in various commercial products in different sectors. Among them, carbon nanomaterials are one of the most promising engineered nanoforms of material. The excellent flexibility and capability to conduct electricity and heat make them suitable for many industrial purposes. It is predicted that nanomaterials production volumes will be increasing constantly during the next decades. However, the question arises what would be the impact of this wide usage of carbon nanomaterials on the environment in upcoming years. As ultimate disposal of these nanomaterials occurs in the aquatic ecosystems, it is very essential to assess its toxicological impact on it. Nevertheless, the risk assessment of carbon nanomaterials is a very intricate task. The reason is that a quantification of carbon nanomaterials in the carbon-rich environment is not at all easy. Hence, it is well evident that there is a necessity of the current research and development to investigate the potential aquatic toxicity of nanomaterials. Algae being an integral part of an aquatic ecosystem could play a role in monitoring tool for assessing the impact of carbon nanomaterial on the aquatic ecosystem. Seeking this correlation, this review focuses on the impact of carbon nanomaterials on algal flora. The mechanism effectually attributing the toxicity on algae is discussed, and future recommendations are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CNT:

Carbon nanotubes

CCM:

Carbonized carbon materials

CNS:

Nitrogen-doped carbon nanosheets

NGS:

Nitrogen-doped graphene nanosheets

ROS:

Reactive oxygen species

DNA:

Deoxyribonucleic acid

TEM:

Transmission electron microscopy

EC50 :

Effective concentration of 50% growth

C60 :

Fullerenes

SWNTs:

Single-walled carbon nanotubes

THF:

Tetrahydrofuran

GA:

Gum Arabic

SDBS:

Sodium dodecyl benzene sulfonate

SDS:

Sodium dodecyl sulfate

PVP:

Polyvinylpyrrolidone

USEPA:

U.S. Environmental Protection Agency

IC50 :

Inhibitory concentration of 50% growth

NOM:

Natural organic matter

DOM:

Dissolved organic matters

GSH synthesis:

Glutathione synthesis

EPS:

Extra polymeric substance

References

  • Abbas A, Al-Amer AM, Laoui T, Al-Marri MJ, Nasser MS, Khraisheh M, Atieh MA (2016) Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep Purif Technol 157:141–161

    Google Scholar 

  • Alfadul SM, Elneshwy AA (2010) Use of nanotechnology in food processing, packaging and safety—review. Afr J Food Agric Nutr Dev 10:6

    Google Scholar 

  • Arora A, Padua GW (2010) Nanocomposites in food packaging. J Food Sci 75:43–49

    Google Scholar 

  • Babu Maddinedi S, Mandal BK, Ranjan S, Dasgupta N (2015) Diastase assisted green synthesis of size-controllable gold nanoparticles. RSC Adv 5:26727–26733

    Google Scholar 

  • Bandyopadhyay S, Peralta-Videa JR, Gardea-Torresdey JL (2013) Advanced analytical techniques for the measurement of nanomaterials in food and agricultural samples: a review. Environ Eng Sci 30:118–125

    Google Scholar 

  • Baruah S, Dutta J (2009) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7(3):191–204

    Google Scholar 

  • Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297(5582):787–792

    Google Scholar 

  • Baun A, Sørensen SN, Rasmussen RF, Hartmann NB, Koch CB (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat Toxicol 86(3):379–387

    Google Scholar 

  • Becaro AA, Jonsson CM, Puti FC, Siqueira MC, Mattoso LH, Correa DS, Ferreira MD (2015) Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustaceans. Environ Nanotechnol Monit Manag 3:22–29

    Google Scholar 

  • Blaise C, Gagné F, Ferard JF, Eullaffroy P (2008) Ecotoxicity of selected nano-materials to aquatic organisms. Environ Toxicol 23(5):591–598

    Google Scholar 

  • Bouchard D, Chang X, Chowdhury I (2015) Heteroaggregation of multiwalled carbon nanotubes with sediments. Environ Nanotechnol Monit Manag 4:42–50

    Google Scholar 

  • Boyes WK, Thornton BLM, Al-Abed SR, Andersen CP, Bouchard DC, Burgess RM, Hubal EAC, Kitchin K, Reichman JR, Rogers KR, Ross JA, Rygiewicz PT, Scheckel EG, Thai SF, Zepp RG, Zucker RM (2017) A comprehensive framework for evaluating the environmental health and safety implications of engineered nanomaterials. Crit Rev Toxicol 49:1–44

    Google Scholar 

  • Chen K, Gao W, Emaminejad S, Kiriya D, Ota H, Nyein HYY, Kuniharu T, Javey A (2016) Printed carbon nanotube electronics and sensor systems. Adv Mater 28(22):4397–4414

    Google Scholar 

  • Dasgupta N, Ranjan S, Mundra S, Ramalingam C, Kumar A (2016a) Fabrication of food grade vitamin E nanoemulsion by low energy approach, characterization and its application. Int J Food Prop 19:700–708

    Google Scholar 

  • Dasgupta N, Ranjan S, Rajendran B, Manickam V, Ramalingam C, Avadhani GS, Kumar A (2016b) Thermal co-reduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environ Sci Pollut Res 23:4149–4163

    Google Scholar 

  • Dasgupta N, Ranjan S, Mishra D, Ramalingam C (2018) Thermal co-reduction engineered silver nanoparticles induce oxidative cell damage in human colon cancer cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Chem Biol Interact 295:109–118

    Google Scholar 

  • De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539

    Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Eklund PC, Rao AM (2000) Carbon nanotubes. In: Andreoni W (ed) The physics of fullerene-based and fullerene-related materials. Physics and chemistry of materials with low-dimensional structures, vol 23. Springer, Dordrecht

    Google Scholar 

  • Eckelman MJ, Mauter MS, Isaacs JA, Elimelech M (2012) New perspectives on nanomaterial aquatic ecotoxicity: production impacts exceed direct exposure impacts for carbon nanotoubes. Environ Sci Technol 46(5):2902–2910

    Google Scholar 

  • Edgington AJ, Roberts AP, Taylor LM, Alloy MM, Reppert J, Rao AM, Ma JD, Klaine SJ (2010) The influence of natural organic matter on the toxicity of multiwalled carbon nanotubes. Environ Toxicol Chem 29(11):2511–2518

    Google Scholar 

  • Fang J, Lyon DY, Wiesner MR, Dong J, Alvarez PJ (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol 41(7):2636–2642

    Google Scholar 

  • Farkas J, Booth AM (2017) Are fluorescence-based chlorophyll quantification methods suitable for algae toxicity assessment of carbon nanomaterials? Nanotoxicology 11(4):569–577

    Google Scholar 

  • Farré M, Sanchís J, Barceló D (2017) Adsorption and desorption properties of carbon nanomaterials, the potential for water treatments and associated risks. In: Lofrano G, Libralato G, Brown J (eds) Nanotechnologies for environmental remediation. Springer, Cham, pp 137–182

    Google Scholar 

  • Freixa A, Acuna V, Sanchís J, Farre M, Barceló D, Sabater S (2018) Ecotoxicological effects of carbon based nanomaterials in aquatic organisms. Sci Total Environ 619:328–337

    Google Scholar 

  • Future Market Inc (2014) The global market for metal oxide nanoparticles to 2025.  https://marketpublishers.com/report/metallurgy/metal_products/global-market-4-metal-oxide-nanoparticles-to-2020.html. Accessed 18 May 2019

  • Gao J, Llaneza V, Youn S, Silvera-Batista CA, Ziegler KJ, Bonzongo JCJ (2012) Aqueous suspension methods of carbon-based nanomaterials and biological effects on model aquatic organisms. Environ Toxicol Chem 31(1):210–214

    Google Scholar 

  • Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S (2014) Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Res Int 2014:4984020

    Google Scholar 

  • Glomstad B, Altin D, Sørensen L, Liu J, Jenssen BM, Booth AM (2016) Carbon nanotube properties influence adsorption of phenanthrene and subsequent bioavailability and toxicity to Pseudokirchneriella subcapitata. Environ Sci Technol 50(5):2660–2668

    Google Scholar 

  • Gupta VK, Moradi O, Tyagi I, Agarwal S, Sadegh H, Shahryari-Ghoshekandi R, Makhlour SH, Goodarzi M, Garshasbi A (2016) Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: a review. Crit Rev Environ Sci Technol 46(2):93–118

    Google Scholar 

  • Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17(5):315–325

    Google Scholar 

  • Hazeem LJ, Bououdina M, Dewailly E, Slomianny C, Barras A, Coffinier Y, Boukherroub R (2017) Toxicity effect of graphene oxide on growth and photosynthetic pigment of the marine alga Picochlorum sp. during different growth stages. Environ Sci Pollut Res 24(4):4144–4152

    Google Scholar 

  • Hwang M, Lee EJ, Kweon SY, Park MS, Jeong JY, Um JH, Kim SA, Han BS, Lee KH, Yoon HJ (2012) Risk assessment principle for engineered nanotechnology in food and drug. Toxicol Res 28:73–79

    Google Scholar 

  • Intrchom W, Thakkar M, Hamilton RF, Holian A, Mitra S (2018) Effect of carbon nanotube-metal hybrid particle exposure to freshwater algae Chlamydomonas reinhardtii. Sci Rep 8(1):1–11

    Google Scholar 

  • Jain A, Ranjan S, Dasgupta N, Ramalingam C (2018) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 58:297–317

    Google Scholar 

  • Kahru A, Ivask A (2012) Mapping the dawn of nanoecotoxicological research. Acc Chem Res 46(3):823–833

    Google Scholar 

  • Khanra A, Sangam S, Shakeel A, Suhag D, Mistry S, Rai MP, Mukherjee M (2018) Sustainable growth and lipid production from Chlorella pyrenoidosa using N-doped carbon nanosheets: unravelling the role of graphitic nitrogen. ACS Sustain Chem Eng 6(1):774–780

    Google Scholar 

  • Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA 108(3):1028–1033

    Google Scholar 

  • Köhler A, Som C, Helland A, Gottschalk F (2008) Studying the potential release of carbon nanotubes throughout the application life cycle. J Clean Prod 16(8–9):927–937

    Google Scholar 

  • Kwok KW, Leung KM, Flahaut E, Cheng J, Cheng SH (2010) Chronic toxicity of double-walled carbon nanotubes to three marine organisms: influence of different dispersion methods. Nanomedicine 5(6):951–961

    Google Scholar 

  • Laux P, Riebeling C, Booth AM, Brain JD, Brunner J, Cerrillo C, Creutzenberg O, Estrela-Lopis I, Gebel T, Johanson G, Jungnickel H (2018) Challenges in characterizing the environmental fate and effects of carbon nanotubes and inorganic nanomaterials in aquatic systems. Environ Sci Nano 5:48–63

    Google Scholar 

  • Lawrence JR, Waiser MJ, Swerhone GDW, Roy J, Tumber V, Paule A, Korber DR (2016) Effects of fullerene (C60), multi-wall carbon nanotubes (MWCNT), single wall carbon nanotubes (SWCNT) and hydroxyl and carboxyl modified single wall carbon nanotubes on riverine microbial communities. Environ Sci Pollut Res 23(10):10090–10102

    Google Scholar 

  • LeCroy GE, Yang ST, Yang F, Liu Y, Fernando KS, Bunker CE, Hu Luo PG, Sun YP (2016) Functionalized carbon nanoparticles: syntheses and applications in optical bioimaging and energy conversion. Coord Chem Rev 320:66–81

    Google Scholar 

  • Leeuw TK, Reith RM, Simonette RA, Harden ME, Cherukuri P, Tsyboulski DA, Weisman RB (2007) Single-walled carbon nanotubes in the intact organism: near-IR imaging and biocompatibility studies in Drosophila. Nano Lett 7(9):2650–2654

    Google Scholar 

  • Lin D, Tian X, Wu F, Xing B (2010) Fate and transport of engineered nanomaterials in the environment. J Environ Qual 39(6):1896–1908

    Google Scholar 

  • Long Z, Ji J, Yang K, Lin D, Wu F (2012) Systematic and quantitative investigation of the mechanism of carbon nanotubes’ toxicity toward algae. Environ Sci Technol 46(15):8458–8466

    Google Scholar 

  • Lyon DY, Alvarez PJ (2008) Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation. Environ Sci Technol 42(21):8127–8132

    Google Scholar 

  • Mahapatra I, Clark J, Dobson PJ, Owen R, Lead JR (2013) Potential environmental implications of nano-enabled medical applications: critical review. Environ Sci Process Impacts 15:123–144

    Google Scholar 

  • Malina T, Maršálková E, Holá K, Tuček J, Scheibe M, Zbořil R, Maršálek B (2019) Toxicity of graphene oxide against algae and cyanobacteria: Nanoblade-morphology-induced mechanical injury and self-protection mechanism. Carbon 155:386–396

    Google Scholar 

  • Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int 2013:1–15

    Google Scholar 

  • Markovic M, Andelkovic I, Shuster J, Janik L, Kumar A, Losic D, McLaughlin MJ (2020) Addressing challenges in providing a reliable ecotoxicology data for graphene-oxide (GO) using an algae (Raphidocelis subcapitata), and the trophic transfer consequence of GO-algae aggregates. Chemosphere 245:125640

    Google Scholar 

  • Markus AA, Parsons JR, Roex EW, de Voogt P, Laane RW (2016) Modelling the release, transport and fate of engineered nanoparticles in the aquatic environment—a review. In: Gunther FA, de Voogt P (eds) Reviews of environmental contamination and toxicology, vol 243. Springer, Cham, pp 53–87

    Google Scholar 

  • Mavrikou S, Kintzios S (2019) Ecotoxicological effects of nanomaterials on growth, metabolism, and toxicity of nonvascular plants. In: Husen A, Iqbal M (eds) Nanomaterials and plant potential. Springer, Cham, pp 393–426

    Google Scholar 

  • Morris VJ (2011) Emerging roles of engineered nanomaterials in the food industry. Trends Biotechnol 29:509–516

    Google Scholar 

  • Mortimer M, Holden PA (2019) Fate of engineered nanomaterials in natural environments and impacts on ecosystems. In: Marmiroli N, White JC, Song J (eds) Exposure to engineered nanomaterials in the environment. Elsevier, Amsterdam, pp 61–103

    Google Scholar 

  • Mottier A, Mouchet F, Pinelli É, Gauthier L, Flahaut E (2017) Environmental impact of engineered carbon nanoparticles: from releases to effects on the aquatic biota. Curr Opin Biotechnol 46:1–6

    Google Scholar 

  • Mouchet F, Landois P, Sarremejean E, Bernard G, Puech P, Pinelli E, Flahaut E, Gauthier L (2008) Characterization and in vivo ecotoxicity evaluation of double-wall carbon nanotubes in larvae of the amphibian Xenopus laevis. Aquat Toxicol 87(2):127–137

    Google Scholar 

  • Neal AL (2008) What can be inferred from bacterium–nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17:362–371

    Google Scholar 

  • Nielsen HD, Berry LS, Stone V, Burridge TR, Fernandes TF (2008) Interactions between carbon black nanoparticles and the brown algae Fucus serratus: Inhibition of fertilization and zygotic development. Nanotoxicology 2(2):88–97

    Google Scholar 

  • Ostrowski A, Nordmeyer D, Boreham A, Holzhausen C, Mundhenk L, Graf C, Meinke MC, Vogt A, Hadam S, Lademann J, Rühl E (2015) Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques. Beilstein J Nanotechnol 6:263–280

    Google Scholar 

  • Paschoalino MP, Marcone GP, Jardim WF (2010) Nanomaterials and the environment. Quim Nova 33(2):421–430

    Google Scholar 

  • Patel A, Tiwari S, Parihar P, Singh R, Prasad SM (2019) Carbon nanotubes as plant growth regulators: impacts on growth, reproductive system, and soil microbial community. In: Tripathi DK, Ahmad P, Sharma S, Chauhan DK, Dubey NK (eds) Nanomaterials in plants, algae and microorganisms. Academic Press, Cambridge, pp 23–42

    Google Scholar 

  • Patil SS, Shedbalkar UU, Truskewycz A, Chopade BA, Ball AS (2016) Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environ Technol Innov 5:10–21

    Google Scholar 

  • Peng Z, Liu X, Zhang W, Zeng Z, Liu Z, Zhang C, Yuan X (2020) Advances in the application, toxicity and degradation of carbon nanomaterials in environment: a review. Environ Int 134:105298

    Google Scholar 

  • Pereira MM, Mouton L, Yéprémian C, Couté A, Lo J, Marconcini JM, Ladeira LO, Raposo NRB, Brandão BR (2014) Ecotoxicological effects of carbon nanotubes and cellulose nanofibers in Chlorella vulgaris. J Nanobiotechnol 12(1):15

    Google Scholar 

  • Petersen EJ, Henry TB (2012) Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes. Environ Toxicol Chem 31(1):60–72

    Google Scholar 

  • Petersen EJ, Huang Q, Weber WJ (2010) Relevance of octanol–water distribution measurements to the potential ecological uptake of multi-walled carbon nanotubes. Environ Toxicol Chem 29(5):1106–1112

    Google Scholar 

  • Pikula KS, Zakharenko AM, Chaika VV, Vedyagin AA, Orlova TY, Mishakov IV, Tsatsakis AM (2018) Effects of carbon and silicon nanotubes and carbon nanofibers on marine microalgae Heterosigma akashiwo. Environ Res 166:473–480

    Google Scholar 

  • Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva S, Singh R, Gorovtsov A, Tsitsuashvili VS, Purvis WO, Ghazaryan KA, Movsesyan HS (2018) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environ Nanotechnol Monit Manag 9:76–84

    Google Scholar 

  • Ranjan S, Dasgupta N, Chakraborty AR, Samuel SM, Ramalingam C, Shanker R, Kumar A (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanoparticle Res 16:1–23

    Google Scholar 

  • Ranjan S, Dasgupta N, Srivastava P, Ramalingam C (2016) A spectroscopic study on interaction between bovine serum albumin and titanium dioxide nanoparticle synthesized from microwave-assisted hybrid chemical approach. J Photochem Photobiol B 161:472–481

    Google Scholar 

  • Ranjan S, Dasgupta N, Chinnappan S, Ramalingam C, Kumar A (2017) A novel approach to evaluate titanium dioxide nanoparticle–protein interaction through docking: an insight into mechanism of action. Proc Natl Acad Sci India Sect B Biol Sci 87:937–943

    Google Scholar 

  • Rhiem S, Riding MJ, Baumgartner W, Martin FL, Semple KT, Jones KC, Schäffer A, Maes HM (2015) Interactions of multiwalled carbon nanotubes with algal cells: Quantification of association, visualization of uptake, and measurement of alterations in the composition of cells. Environ Pollut 196:431–439

    Google Scholar 

  • Sanchís J, Olmos M, Vincent P, Farre M, Barceló D (2016) New insights on the influence of organic co-contaminants on the aquatic toxicology of carbon nanomaterials. Environ Sci Technol 50(2):961–969

    Google Scholar 

  • Sardoiwala MN, Kaundal B, Choudhury SR (2018) Toxic impact of nanomaterials on microbes, plants and animals. Environ Chem lett 16(1):147–160

    Google Scholar 

  • Schwab F, Bucheli TD, Lukhele LP, Magrez A, Nowack B, Sigg L, Knauer K (2011) Are carbon nanotube effects on green algae caused by shading and agglomeration? Environ Sci Technol 45(14):6136–6144

    Google Scholar 

  • Schwab F, Bucheli TD, Camenzuli L, Magrez A, Knauer K, Sigg L, Nowack B (2013) Diuron sorbed to carbon nanotubes exhibits enhanced toxicity to Chlorella vulgaris. Environ Sci Technol 47(13):7012–7019

    Google Scholar 

  • Shende RC, Ramaprabhu S (2016) Thermo-optical properties of partially unzipped multiwalled carbon nanotubes dispersed nanofluids for direct absorption solar thermal energy systems. Sol Energy Mater Sol Cells 157:117–125

    Google Scholar 

  • Shi B, Su Y, Zhang L, Liu R, Huang M, Zhao S (2016) Nitrogen-rich functional groups carbon nanoparticles based fluorescent pH sensor with broad-range responding for environmental and live cells applications. Biosens Bioelectron 82:233–239

    Google Scholar 

  • Sobek A, Bucheli TD (2009) Testing the resistance of single-and multi-walled carbon nanotubes to chemothermal oxidation used to isolate soots from environmental samples. Environ Pollut 157(4):1065–1071

    Google Scholar 

  • Stark WJ (2011) Nanoparticles in biological systems. Angew Chem Int Ed 50:1242–1258

    Google Scholar 

  • Thakkar M, Mitra S, Wei L (2016) Effect on growth, photosynthesis, and oxidative stress of single walled carbon nanotubes exposure to marine alga Dunaliella tertiolecta. J Nanomater 2016:8380491

    Google Scholar 

  • Upadhyayula VK, Deng S, Mitchell MC, Smith GB (2009) Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci Total Environ 408(1):1–1

    Google Scholar 

  • Verneuil L, Silvestre J, Mouchet F, Flahaut E, Boutonnet JC, Bourdiol F, Bortolamiol T, Baqué D, Gauthier L, Pinelli E (2015) Multi-walled carbon nanotubes, natural organic matter, and the benthic diatom Nitzschia palea: “A sticky story”. Nanotoxicology 9(2):219–229

    Google Scholar 

  • Wang J, Zhang X, Chen Y, Sommerfeld M, Hu Q (2008) Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 73(7):1121–1128

    Google Scholar 

  • Wang F, Guan W, Xu L, Ding Z, Ma H, Ma A, Terry N (2019a) Effects of nanoparticles on algae: adsorption, distribution, ecotoxicity and fate. Appl Sci 9(8):1534

    Google Scholar 

  • Wang Q, Li C, Wang Y, Que X (2019b) Phytotoxicity of graphene family nanomaterials and its mechanisms: a review. Front chem 7:292

    Google Scholar 

  • Wei L, Thakkar M, Chen Y, Ntim SA, Mitra S, Zhang X (2010) Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta. Aquat Toxicol 100(2):194–201

    Google Scholar 

  • Xiao A, Wang C, Chen J, Guo R, Yan Z, Chen J (2016) Carbon and metal quantum dots toxicity on the microalgae Chlorella pyrenoidosa. Ecotoxicol Environ 133:211–217

    Google Scholar 

  • Yada RY, Buck N, Canady R, DeMerlis C, Duncan T, Janer G, Juneja L, Lin M, McClements DJ, Noonan G, Oxley J (2014) Engineered nanoscale food ingredients: evaluation of current knowledge on material characteristics relevant to uptake from the gastrointestinal tract. Compr Rev Food Sci Food Saf 13:730–744

    Google Scholar 

  • Yao K, Lv X, Zheng G, Chen Z, Jiang Y, Zhu X, Cai Z (2018) Effects of carbon quantum dots on aquatic environments: comparison of toxicity to organisms at different trophic levels. Environ Sci Technol 52(24):14445–14451

    Google Scholar 

  • Youn S, Wang R, Gao J, Hovespyan A, Ziegler KJ, Bonzongo JCJ, Bitton G (2012) Mitigation of the impact of single-walled carbon nanotubes on a freshwater green algae: Pseudokirchneriella subcapitata. Nanotoxicology 6(2):161–172

    Google Scholar 

  • Zhang L, Lei C, Chen J, Yang K, Zhu L, Lin D (2015) Effect of natural and synthetic surface coatings on the toxicity of multiwalled carbon nanotubes toward green algae. Carbon 83:198–207

    Google Scholar 

  • Zhang W, Zhu S, Luque R, Han S, Hu L, Xu G (2016) Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chem Soc Rev 45(3):715–752

    Google Scholar 

  • Zhang M, Wang H, Song Y, Huang H, Shao M, Liu Y, Kang Z (2018a) Pristine carbon dots boost the growth of Chlorella vulgaris by enhancing photosynthesis. ACS Appl Bio Mater 1(3):894–902

    Google Scholar 

  • Zhang M, Wang H, Song Y, Huang H, Shao M, Liu Y, Li H, Kang Z (2018b) Pristine carbon dots boost the growth of Chlorella vulgaris by enhancing photosynthesis. ACS Appl Energy Mater 1:894–902

    Google Scholar 

  • Zhang C, Chen X, Tan L, Wang J (2018c) Combined toxicities of copper nanoparticles with carbon nanotubes on marine microalgae Skeletonema costatum. Environ Sci Pollut Res 25(13):13127–13133

    Google Scholar 

  • Zhang M, Wang H, Liu P, Song Y, Huang H, Shao M, Kang Z (2019) Biotoxicity of degradable carbon dots towards microalgae Chlorella vulgaris. Environ Sci Nano 6(11):3316–3323

    Google Scholar 

Download references

Acknowledgements

Contribution of Pallavi Saxena to this study was financially supported by University Grants Commission (UGC), New Delhi, India, in the form of BSR meritorious fellowship [F.25-a/2013-14(BSR)/7-125/2007(BSR)]. Harish received financial support from UGC, New Delhi, India, in the form of Start-up Grant Project [F.20-11(21)/2012(BSR)]. Devendra Singh Rathore acknowledge the financial support received from Department of Science and Technology (DST), New Delhi in form of core research grant (CRG/2019/006919). We are thankful to anonymous reviewers for critical reading and improvement in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, P., Sangela, V., Ranjan, S. et al. Aquatic nanotoxicology: impact of carbon nanomaterials on algal flora. Energ. Ecol. Environ. 5, 240–252 (2020). https://doi.org/10.1007/s40974-020-00151-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40974-020-00151-9

Keywords

Navigation