Skip to main content
Log in

Reliable and well-controlled synthesis of noble metal nanoparticles by continuous wave laser ablation in different liquids for deposition of thin films with variable optical properties

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report the results of continuous wave laser interactions with both gold and silver targets in the presence of different liquids (deionized water, ethanol, and glycerol). Upon moderate laser irradiation at wavelength of 1.06 nm during 30 min, nanoparticle colloids are shown to be formed with surprisingly narrow size distributions and average dispersion as small as 15–20 nm. The average particle sizes range between 8 and 52 nm for gold and between 20 and 107 nm for silver. This parameter is shown to be stable and well-controlled by such laser parameters as intensity and effective irradiation time, as well as by the choice of the liquid phase. The possibilities of an efficient control over the proposed synthesis techniques are discussed, and the results of a bimetallic Au–Ag structure deposition from the obtained colloids are presented. The formation of the extended arrays of gold and silver nanoparticles with controlled morphology is examined. The changes in the optical properties of the obtained thin films are found to depend on their morphology, in particular, on the particle size, and distance between them.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abramov DV, Antipov AA, Arakelian SM, Khor’kov KS, Kucherik AO, Kutrovskaya SV, Prokoshev VG (2014) New advantages and challenges for laser-induced nanostructured cluster materials: functional capability for experimental verification of macroscopic quantum phenomena. Laser Phys. 24:074010. doi:10.1088/1054-660X/24/7/074010

  • Akman E, Genc Oztoprak B, Gunes M, Kacar E, Demir A (2011) Effect of femtosecond Ti:Sapphire laser wavelengths on plasmonic behaviour and size evolution of silver nanoparticles. Photon Nanostruct Fundam Appl 9:276–286. doi:10.1016/j.photonics.2011.05.004

  • Antipov AA, Arakelyan SM, Kutrovskaya SV, Kucherik AO, Makarov AA, Nogtev DS, Prokoshev VG (2012) Pulse laser deposition of cluster nanostructures from colloidal single-component systems. Bull Russian Acad Sci Phys 76:611–617. doi:10.3103/S106287381206007X

    Article  Google Scholar 

  • Barcikowski S, Menéndez-Manjón A, Chichkov B, Brikas M, Raiukaitis G (2007) Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow. Appl Phys Lett 91:083113. doi:10.1063/1.2773937

    Article  Google Scholar 

  • Barmina EV, Stratakis E, Fotakis K, Shafeev GA (2010) Generation of nanostructures on metals by laser ablation in liquids: new results. Quantum Electron 40:1012–1020. doi:10.1070/QE2010v040n11ABEH014444

    Article  Google Scholar 

  • Besner S, Kabashin AV, Meunier M (2007) Two-step femtosecond laser ablation-based method for the synthesis of stable and ultra-pure gold nanoparticles in water Appl. Phys A 88:269–272. doi:10.1007/s00339-007-4001-1

    Google Scholar 

  • Destouches N, Crespo-Monteiro N, Vitrant G, Lefkir Y, Reynaud S, Epicier T, Liu Y, Vocanson F, Pigeon F (2014) Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation. J Mater Chem C 2:6256–6263. doi:10.1039/C4TC00971A

    Article  Google Scholar 

  • Gatskevich EI, Ivlev GD, Chaplanov AM (1995) Melting and solidification of the surface layer of single-crystal silicon heated by pulsed laser radiation. Quantum Electron 22:801–806. doi:10.1070/QE1995v025n08ABEH000466

    Google Scholar 

  • Genov DA, Sarychev AK, Shalaev VM, Wei A (2004) Resonant field enhancements from metal nanoparticle arrays. Nano Lett 4:153–158. doi:10.1021/nl0343710

  • Gouriet K, Sentis M, Itina TE (2009) Molecular dynamics study of nanoparticle evaporation and condensation in a gas. J Phys Chem C 113:18462–18467. doi:10.1021/jp9046648

    Article  Google Scholar 

  • Herminghaus S, Jacobs K, Mecke K, Bischof J, Fery A, Ibn-Elhaj M, Schlagowski S (1998) Spinodal dewetting in liquid crystal and liquid metal films. Science 282:916–919. doi:10.1126/science.282.5390.916

    Article  Google Scholar 

  • Itina TE (2011) On nanoparticle formation by laser ablation in liquids. J Phys Chem C 115:5044–5048

    Article  Google Scholar 

  • Lee K, El-Sayed M (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225. doi:10.1021/jp062536y

    Article  Google Scholar 

  • Letfullin R, Joenathan C, George T, Zharov V (2006) Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer. Nanomedicine 1:473–480. doi:10.2217/17435889.1.4.473

    Article  Google Scholar 

  • Linz N, Freidank S, Liang X-X, Vogelmann H, Trickl T, Vogel A (2015) Wavelength dependence of nanosecond infrared laser-induced breakdown in water: evidence for multiphoton initiation via an intermediate state. Phys Rev B 91:134114. doi:10.1103/PhysRevB.91.134114

    Article  Google Scholar 

  • Liu Z, Yuan Y, Khan S, Abdolvand A, Whitehead D, Schmid M, Li L (2009) Generation of metal-oxide nanoparticles using continuous-wave fibre laser ablation in liquid. J Micromech Microeng 19:054008. doi:10.1088/0960-1317/19/5/054008

    Article  Google Scholar 

  • Mafune F, Kohno J, Takeda Y, Kondow T (2003) Formation of stable platinum nanoparticles by laser ablation in water. J Phys Chem B 107:4218–4223. doi:10.1021/jp021580k

    Article  Google Scholar 

  • Makarov GN (2013) Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography. Phys Usp 56:643–682. doi:10.3367/UFNe.0183.201307a.0673

    Article  Google Scholar 

  • Persson BNJ, Liebsch A (1983) Optical properties of two-dimensional systems of randomly distributed particles. Phys Rev B 28:4247–4254. doi:10.1103/PhysRevB.28.4247

    Article  Google Scholar 

  • Riabinina D, Chaker M, Margot J (2012) Dependence of gold nanoparticles production on pulse duration by laser ablation in liquid media. Nanotechnology 23:135603. doi:10.1088/0957-4484/23/13/135603

    Article  Google Scholar 

  • Simakin AV, Voronov VV, Shafeev GA, Brayner R, Bozon-Verduraz F (2001) Nanodisks of Au and Ag produced by laser ablation in liquid environment. Chem Phys Lett 348:182–186. doi:10.1016/S0009-2614(01)01136-8

    Article  Google Scholar 

  • Sonay AY, Çağlayan AB, Çulha M (2012) Synthesis of peptide mediated Au core-Ag shell nanoparticles as surface-enhanced Raman scattering labels. Plasmonics 7:77–86. doi:10.1007/s11468-011-9278-4

    Article  Google Scholar 

  • Sylvestre J-P, Kabashin AV, Sacher E, Meunier M, Luong JHT (2004) J Am Chem Soc 126:7176–7177. doi:10.1021/ja048678s

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the Ministry of Education and Science of the Russian Federation (state project no. 2014/13), RBFR Grant number 16-32-60067 mol_a_dk, by the Government of Russian Federation (Grant no. 074-U01), and by France-Russia collaborative project PICS 6106 of DRI CNRS, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Itina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arakelyan, S.M., Veiko, V.P., Kutrovskaya, S.V. et al. Reliable and well-controlled synthesis of noble metal nanoparticles by continuous wave laser ablation in different liquids for deposition of thin films with variable optical properties. J Nanopart Res 18, 155 (2016). https://doi.org/10.1007/s11051-016-3468-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3468-0

Keywords

Navigation