Skip to main content
Log in

Stabilization of silica nanoparticles dispersions by surface modification with silicon derivative of thiacalix[4]arene

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

For the first time, silica nanopowder functionalized with thiacalixarene derivatives was synthesized by ultrasonication of nanoparticles (diameter 23.7 ± 2.4 nm) with organosilicon derivative of thiacalixarene in glacial acetic acid. The protocol resulted in the formation of colloidal solution of low-disperse (polydispersity index of 0.11) submicron-sized (diameter 192.5 nm) clusters of nanoparticles according to the dynamic light scattering data. As defined by scanning electron microscopy (SEM), mean diameter of thiacalixarene-functionalized nanoparticles is equal to 25.5 ± 2.5 nm and the shape is close to spherical. SEM images confirm low aggregation of thiacalixarene-modified nanoparticle compared to initial silica nanopowder (mean diameter of aggregates 330 and 429 nm, correspondingly). According to the thermogravimetry/differential scanning calorimetry and elemental analysis of the nanoparticles obtained, 5 % of the powder mass was related to thiacalixarene units. The effect of thiacalixarene functionalization of silica nanoparticles on linear polydimethylsiloxane (PDMS)—silica dispersions was modeled to achieve high resistance toward liquid media required for similar sol–gel prepared PDMS-based materials applied for solid-phase microextraction. In such a manner, the influence of thiacalixarene-modified nanofiller on thermal stability and resistance against polar organic solvents was estimated. Similarity of decomposition temperature of both thiacalixarene-functionalized nanoparticles and non-functionalized silica nanoparticles was found. Swelling/solubility behavior observed was related to partial dissolution of PDMS/silica (10 % mixture) in alcohols. Thiacalixarene-functionalized silica particles exerted significantly higher resistance of PDMS/silica composites toward alcohol solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bonacchi S, Genovese D, Juris R, Montalti M, Prodi L, Rampazzo E, Zaccheroni N (2011) Luminescent silica nanoparticles: extending the frontiers of brightness Angewandte. Chem Int Ed 50(18):4056–4066. doi:10.1002/anie.201004996

    Article  Google Scholar 

  • Bychkova AA, Soskov FV, Demchenko AI, Storozhenko PA, Muzafarov AM (2011) Condensation of methylphenylalkoxysilanes in an active medium as a selective method for synthesis of cyclic or linear methylphenylsiloxanes. Russ Chem Bull Int Ed 60(11):2384–2389. doi:10.1007/s11172-011-0366-6

    Article  Google Scholar 

  • Camenzind A, Schweizer T, Sztucki M, Pratsinis SE (2010) Structure & strength of silica-PDMS nanocomposites. Polymer 51(8):1796–1804. doi:10.1016/j.polymer.2010.02.030

    Article  Google Scholar 

  • Cestari AR, Airoldi C (1995) A new elemental analysis method based on thermogravimetric data and applied to alkoxysilane immobilized on silicas. J Therm Anal 44(1):79–87. doi:10.1007/BF02547136

    Article  Google Scholar 

  • Chau JLH, Yang CC (2014) Surface modification of silica nanopowders in microwave plasma. J Exp Nanosci 9(4):357–361. doi:10.1080/17458080.2012.661473

    Article  Google Scholar 

  • Chrissafis K, Bikiaris D (2011) Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim Acta 523(1):1–24. doi:10.1016/j.tca.2011.06.010

    Article  Google Scholar 

  • Delahousse G, Peulon-Agasse V, Debray JC, Vaccaro M, Cravotto G, Jabin I, Cardinael P (2013) The incorporation of calix[6]arene and cyclodextrin derivatives into sol–gels for the preparation of stationary phases for gas chromatography. J Chromatogr A 1318:207–216. doi:10.1016/j.chroma.2013.10.007

    Article  Google Scholar 

  • Dirè S (2003) Sol-gel derived polysiloxane-oxide hybrid materials: extent of phase interaction. J Sol–Gel Sci Technol 26(1–3):285–290. doi:10.1023/A:1020771704207

    Article  Google Scholar 

  • Ek S, Root A, Peussa M, Niinistö L (2001) Determination of the hydroxyl group content in silica by thermogravimetry and a comparison with 1H MAS NMR results. Thermochim Acta 379(1):201–212. doi:10.1016/S0040-6031(01)00618-9

    Article  Google Scholar 

  • Gorbachuk VV, Yakimova LS, Mostovaya OA, Bizyaev DA, Bukharaev AA, Antipin IS, Konovalov AI, Zharov I, Stoikov II (2011) Silica nanoparticles with proton donor and proton acceptor groups: synthesis and aggregation. Silicon 3(1):5–12. doi:10.1007/s12633-011-9077-8

    Article  Google Scholar 

  • Gorbachuk VV, Yakimova LS, Vavilova AA, Ziatdinova RV, Rizvanov IK, Trifonov AA, Samohina AI, Evtugyn VG, Stoikov II (2014) MALDI-TOF MS and morphology studies of thiacalixarene-silsesquioxane products of oligo-and polycondensation. Silicon 6:215–226. doi:10.1007/s12633-014-9179-1

    Article  Google Scholar 

  • Holst JR, Trewin A, Cooper AI (2010) Porous organic molecules. Nat Chem 2(11):915–920. doi:10.1038/nchem.873

    Article  Google Scholar 

  • Jadav GL, Aswal VK, Singh PS (2013) Preparation of bifunctional poly (dimethylsiloxane) membrane by dual X-linking. J Mater Chem A 1(15):4893–4903. doi:10.1039/C3TA10358G

    Article  Google Scholar 

  • Katagiri H, Tanaka S, Ohkubo K, Akahira Y, Morohashi N, Iki N, Hattori T, Miyano S (2014) Regioselective synthesis of 1, 2-and 1, 3-diaminothiacalix [4] arenes via nucleophilic aromatic substitution and their X-ray structures. RSC Adv 4(19):9608–9616. doi:10.1039/C3RA47718E

    Article  Google Scholar 

  • Kataoka H, Saito K (2011) Recent advances in SPME techniques in biomedical analysis. J Pharm Biomed Anal 54(5):926–950. doi:10.1016/j.jpba.2010.12.010

    Article  Google Scholar 

  • Kumar R, Lee YO, Bhalla V, Kumar M, Kim JS (2014) Recent developments of thiacalixarene based molecular motifs. Chem Soc Rev 43:4824–4870. doi:10.1039/C4CS00068D

    Article  Google Scholar 

  • Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices. Anal Chem 75(23):6544–6554. doi:10.1021/ac0346712

    Article  Google Scholar 

  • Li D, Kaner RB (2006) Shape and aggregation control of nanoparticles: not shaken, not stirred. J Am Chem Soc 128(3):968–975. doi:10.1021/ja056609n

    Article  Google Scholar 

  • Li X, Zeng Z, Chen Y, Xu Y (2004) Determination of phthalate acid esters plasticizers in plastic by ultrasonic solvent extraction combined with solid-phase microextraction using calix[4]arene fiber. Talanta 63(4):1013–1019. doi:10.1016/j.talanta.2004.01.006

    Article  Google Scholar 

  • Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41(7):2590–2605. doi:10.1039/C1CS15246G

    Article  Google Scholar 

  • Liu YL, Su YH, Lee KR, Lai JY (2005) Crosslinked organic–inorganic hybrid chitosan membranes for pervaporation dehydration of isopropanol–water mixtures with a long-term stability. J Membr Sci 251:233–238. doi:10.1002/jssc.200700546

    Article  Google Scholar 

  • Liu G, Wei W, Wu H, Dong X, Jiang M, Jin W (2011) Pervaporation performance of PDMS/ceramic composite membrane in acetone butanol ethanol (ABE) fermentation–PV coupled process. J Membr Sci 373(1):121–129. doi:10.1016/j.memsci.2011.02.042

    Article  Google Scholar 

  • Majewski P, Keegan A (2012) Surface properties and water treatment capacity of surface engineered silica coated with 3-(2-aminoethyl) aminopropyltrimethoxysilane. Appl Surf Sci 258(7):2454–2458. doi:10.1016/j.apsusc.2011.10.070

    Article  Google Scholar 

  • Mollard A, Ibragimova D, Antipin IS, Konovalov AI, Stoikov I, Zharov I (2010) Molecular transport in thiacalix [4] arene-modified nanoporous colloidal films. Microporous Mesoporous Mater 131(1):378–384. doi:10.1016/j.micromeso.2010.01.018

    Article  Google Scholar 

  • Morohashi N, Katagiri H, Shimazaki T, Kitamoto Y, Tanaka S, Kabuto C, Iki N, Hattori T, Miyano S (2013) Unique inclusion behaviour of 5, 11, 17, 23-tetra-tert-butyl-25, 26, 27, 28-tetraaminothiacalix [4]-arene towards small organic molecules. Supramol Chem 25(12):812–818. doi:10.1080/10610278.2013.806808

    Article  Google Scholar 

  • Ogoshi T, Nishida Y, Yamagishi TA, Nakamoto Y (2010) Polypseudorotaxane constructed from pillar [5] arene and viologen polymer. Macromolecules 43(7):3145–3147. doi:10.1021/ma100079g

    Article  Google Scholar 

  • Ozmen M, Ozbek Z, Buyukcelebi S, Bayrakci M, Ertul S, Ersoz M, Capan R (2014) Fabrication of Langmuir-Blodgett thin films of calix[4]arenes and their gas sensing properties: investigation of upper rim para substituent effect. Sens Actuators B 190:502–511. doi:10.1016/j.snb.2013.09.008

    Article  Google Scholar 

  • Perrin DD, Armarego WLF, Perrin DR (1980) Purification of laboratory chemicals, 2nd edn. Pergamon Press, Exeter

    Google Scholar 

  • Poole SK, Poole CF (2008) The orthogonal character of stationary phases for gas chromatography. J Sep Sci 31(6–7):1118–1123. doi:10.1002/jssc.200700546

    Article  Google Scholar 

  • Rodríguez-Núñez JR, Madera-Santana TJ, Sánchez-Machado DI, López-Cervantes J, Valdez HS (2014) Chitosan/hydrophilic plasticizer-based films: preparation physicochemical and antimicrobial properties. J Polym Environ 22(1):41–51. doi:10.1007/s10924-013-0621-z

    Article  Google Scholar 

  • Sreeremya TS, Thulasi KM, Krishnan A, Ghosh S (2012) A novel aqueous route to fabricate ultrasmall monodisperse lipophilic cerium oxide nanoparticles. Ind Eng Chem Res 51:318–326. doi:10.1021/ie2019646

    Article  Google Scholar 

  • Stoikov II, Vavilova AA, Badaeva RD, Gorbachuk VV, Evtugyn VG, Sitdikov RR, Yakimova LS, Zharov I (2013) Synthesis of hybrid nano-and microsized particles on the base of colloid silica and thiacalix [4] arene derivatives. J Nanopart Res 15(5):1–14. doi:10.1007/s11051-013-1617-2

    Article  Google Scholar 

  • Stolarczyk JK, Ghosh S, Brougham DF (2009) Controlled growth of nanoparticle clusters through competitive stabilizer desorption. Angew Chem Int Ed 48:175–178. doi:10.1002/anie.200803895

    Article  Google Scholar 

  • Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24(12):1504–1534. doi:10.1002/adma.201104763

    Article  Google Scholar 

  • Tatou M, Genix AC, Imaz A, Forcada J, Banc A, Schweins R, Grillo I, Oberdisse J (2011) Reinforcement and polymer mobility in silica-latex nanocomposites with controlled aggregation. Macromolecules 44(22):9029–9039. doi:10.1021/ma2012893

    Article  Google Scholar 

  • Yang HH, Zhang SQ, Chen XL, Zhuang ZX, Xu JG, Wang XR (2004) Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal Chem 76(5):1316–1321. doi:10.1021/ac034920m

    Article  Google Scholar 

  • Yang L, Qiu S, Zhang Y, Xu Y (2013) Preparation of PDMS/SiO2 nanocomposites via ultrasonical modification and miniemulsion polymerization. J Polym Res 20(1):1–6. doi:10.1007/s10965-012-0068-2

    Article  Google Scholar 

  • Yoon SD, Park MH, Byun HS (2012) Mechanical and water barrier properties of starch/PVA composite films by adding nano-sized poly (methyl methacrylate-co-acrylamide) particles. Carbohydr Polym 87(1):676–686. doi:10.1016/j.carbpol.2011.08.046

    Article  Google Scholar 

  • Yuskova EA, Ignacio-de Leon PAA, Khabibullin A, Stoikov II, Zharov I (2013) Silica nanoparticles surface-modified with thiacalixarenes selectively adsorb oligonucleotides and proteins. J Nanopart Res 15(10):1–9. doi:10.1007/s11051-013-2012-8

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of RFBR (13-03-12055 ofi_m and 14-03-31578 mol_a) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan I. Stoikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbachuk, V.V., Ziatdinova, R.V., Evtugyn, V.G. et al. Stabilization of silica nanoparticles dispersions by surface modification with silicon derivative of thiacalix[4]arene. J Nanopart Res 17, 117 (2015). https://doi.org/10.1007/s11051-015-2932-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2932-6

Keywords

Navigation