Skip to main content
Log in

Synthesis of InN nanoparticles by rapid thermal ammonolysis

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

AIII group nitrides have attracted a great deal of attention in the last decades due to their applications in modern microelectronic and optoelectronic devices. In this paper, simple and controllable methods for a synthesis of InN nanoparticles in the form of nanodisks and skeletal nanostructures are presented. Careful control of the experimental conditions is necessary, as the thermal stability of InN at elevated temperatures is low. The morphology of nanoparticles was investigated by scanning electron microscopy and transmission electron microscopy combined with selected area diffraction. Profile analysis of powder X-ray diffraction data shows that the apparent size of the crystals along [001] direction decreases from the size larger than 100 nm for the low temperature syntheses to about 65 nm for the high temperature ones. Structural properties were investigated using X-ray diffraction, Raman, and photoluminescence spectroscopy. Thermal stability was probed by differential scanning calorimetry coupled with thermogravimetry in Ar and air atmospheres. Chemical composition and purity of InN are strongly dependent on temperature and duration of the synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abrait N, Laval JP, Frit B, Roult G (1982) Structure Cristalline de l’Oxynitrofluorure d’Indium In32ON17F43. Acta Crystallogrs B 38:1088–1093

    Article  Google Scholar 

  • Agullo-Rueda F, Mendez EE, Bojarczuk B, Guha S (2000) Raman spectroscopy of wurtzite InN films grown on Si. Solid State Commun 115:19–21

    Article  Google Scholar 

  • Bai YJ, Liu ZG, Xu XG, Cui DL, Hao XP, Feng X, Wang QL (2002) Preparation of InN nanocrystals by solvo-thermal method. J Cryst Growth 241:189–192

    Article  Google Scholar 

  • Bhat SV, Biswas K, Rao CNR (2007) Synthesis and optical properties of In-doped GaN nanocrystals. Solid State Commun 141:325–328

    Article  Google Scholar 

  • Bungaro C, Rapcewicz K, Bernholc J (2000) Ab initio phonon dispersions of wurtzite AlN, GaN, and InN. Phys Rev B 61:6720–6725

    Article  Google Scholar 

  • Chitara B, Venkataprasad Bhat S, Vivekchand SRC, Gomathi A, Rao CVR (2008) White-light sources based on composites of GaN nanocrystals with conducting polymers and nanophosphors. Solid State Commun 147:409–413

    Article  Google Scholar 

  • Chitara B, Late DJ, Krupanidhi SB, Rao CNR (2010) Room-temperature gas sensors based on gallium nitride nanoparticles. Solid State Commun 150:2053–2056

    Article  Google Scholar 

  • Dahal R, Pantha B, Li J, Lin JY, Jiang HX (2009) InGaN/GaN multiple quantum well solar cells with long operating wavelengths. Appl Phys Lett 94:063505

    Article  Google Scholar 

  • Davydov VY et al (2002a) Band gap of InN and In-rich InxGa1-xN alloys (0.36 < x < 1). Phys Status Solidi B 230:R4–R6

    Article  Google Scholar 

  • Davydov VY et al (2002b) Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap. Phys Status Solidi 229:R1–R3

    Article  Google Scholar 

  • Fasol G (1996) Room-temperature blue gallium nitride laser diode. Science 272:1751–1752

    Article  Google Scholar 

  • Fu SP, Chen YF (2004) Effective mass of InN epilayers. Appl Phys Lett 85:1523–1525

    Article  Google Scholar 

  • Gonzalez D, Lozano JG, Herrera M, Morales FM, Ruffenach S, Briot O, Garcia R (2010) Phase mapping of aging process in InN nanostructures: oxygen incorporation and the role of the zinc blende phase. Nanotechnology 21:185706

    Article  Google Scholar 

  • Gwo S, Wu CL, Shen CH, Chang WH, Hsu TM, Wang JS, Hsu JT (2004) Heteroepitaxial growth of wurtzite InN films on Si(111) exhibiting strong near-infrared photoluminescence at room temperature. Appl Phys Lett 84:3765–3767

    Article  Google Scholar 

  • Hasan MT, Bhuiyan AG, Yamamoto A (2008) Two dimensional electron gas in InN-based heterostructures: effects of spontaneous and piezoelectric polarization. Solid·State Electron 52:134–139

    Article  Google Scholar 

  • Hsieh JC, Yun DS, Hu E, Belcher AM (2010) Ambient pressure, low-temperature synthesis and characterization of colloidal InN nanocrystals. J Mater Chem 20:1435–1437

    Article  Google Scholar 

  • Ikuta K, Inoue Y, Takai O (1998) Optical and electrical properties of InN thin films grown on ZnO/alpha-Al2O3 by RF reactive magnetron sputtering. Thin Solid Films 334:49–53

    Article  Google Scholar 

  • Inushima T, Shiraishi T, Davydov VY (1999) Phonon structure of InN grown by atomic layer epitaxy. Solid State Commun 110:491–495

    Article  Google Scholar 

  • Justice J, Kadiyala A, Dawson J, Korakakis D (2013) Group III-nitride based electronic and optoelectronic integrated circuits for smart lighting applications. MRS Proc 1492:123–128

  • Juza R, Hahn H (1940) Untersuchungen über die nitride von cadmium, gallium, indium und germanium. Metallamide und metallnitride. Z Anorg Allgem Chem 244:111–124

  • Kaczmarczyk G et al (2000) Lattice dynamics of hexagonal and cubic InN: Raman-scattering experiments and calculations. Appl Phys Lett 76:2122–2124

    Article  Google Scholar 

  • Kam KC, Deepak FL, Gundiah G, Rao CNR, Cheetham AK (2004) Properties of nanostructured GaN prepared by different methods. Solid State Sci 6:1107–1112

    Article  Google Scholar 

  • Kuzmik J, Georgakilas A (2011) Proposal of high-electron mobility transistors with strained InN channel. IEEE Trans Electron Devices 58:720–724

    Article  Google Scholar 

  • Leitner J, Marsik P, Sedmidubsky D, Ruzicka K (2004) High temperature enthalpy, heat capacity and other thermodynamic functions of solid InN. J Phys Chem Solids 65:1127–1131

    Article  Google Scholar 

  • Maleyre W, Briot O, Ruffenach S (2004) MOVPE growth of InN films and quantum dots. J Cryst Growth 269:15–21

    Article  Google Scholar 

  • Matsuoka T (2005) Progress in nitride semiconductors from GaN to InN—MOVPE growth and characteristics. Superlattices Microstruct 37:19–32

    Article  Google Scholar 

  • Matsuoka T, Okamoto H, Nakao M, Harima H, Kurimoto E (2002) Optical bandgap energy of wurtzite InN. Appl Phys Lett 81:1246–1248

    Article  Google Scholar 

  • Nakamura S, Senoh N, Iwasa N, Nagahama S (1995) High-brightness InGaN blue, green and yellow light-emitting diodes with quantum-well structures. Jpn J Appl Phys Part 2 34:L797–L799

    Article  Google Scholar 

  • Osamura K, Ohtsuki A, Shingu PH, Murakami Y, Nakajima K (1972) Fundamental absorption-edge in GaN, InN and their alloys. Solid State Commun 11:617–621

    Article  Google Scholar 

  • Paszkowicz W et al (1999) Lattice parameters, density and thermal expansion of InN microcrystals grown by the reaction of nitrogen plasma with liquid indium. Philos Mag A 79:1145–1154

    Article  Google Scholar 

  • Sardar K, Rao CNR (2005) AlN nanocrystals by new chemical routes. Solid State Sci 7:217–220

    Article  Google Scholar 

  • Schofield PS, Zhou WZ, Wood P, Samuel IDW, Cole-Hamilton DJ (2004) Nanoparticles from the decomposition of the complex [InN3(CH2CH2CH2NMe2)2]. J Mater Chem 14:3124–3126

    Article  Google Scholar 

  • Schwenzer B, Loeffler L, Seshadri R, Keller S, Lange FF, DenBaars SP, Mishra UK (2004) Preparation of indium nitride micro- and nanostructures by ammonolysis of indium oxide. J Mater Chem 14:637–641

    Article  Google Scholar 

  • Sofer Z et al (2013) Rapid thermal synthesis of GaN nanocrystals and nanodisks. J Nanopart Res 15:1530

    Article  Google Scholar 

  • Tansley TL, Foley CP (1986) Optical band-gap of indium nitride. J Appl Phys 59:3241–3244

    Article  Google Scholar 

  • Westra KL, Lawson RPW, Brett MJ (1988) The effects of oxygen contamination on the properties of reactively sputtered indium nitride films. J Vac Sci Technol A 6:1730–1732

    Article  Google Scholar 

  • Wu J et al (2002) Unusual properties of the fundamental band gap of InN. Appl Phys Lett 80:3967–3969

    Article  Google Scholar 

  • Wu CZ, Li TW, Lei LY, Hu SQ, Liu Y, Xie Y (2005) Indium nitride from indium iodide at low temperatures: synthesis and their optical properties. New J Chem 29:1610–1615

    Article  Google Scholar 

  • Xiao JP, Xie Y, Tang R, Luo W (2003) Benzene thermal conversion to nanocrystalline indium nitride from sulfide at low temperature. Inorg Chem 42:107–111

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by Czech Science Foundation (Project No. 13-20507S). Financial support was received from specific university research (MSMT No 20/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Sofer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šimek, P., Sedmidubský, D., Klímová, K. et al. Synthesis of InN nanoparticles by rapid thermal ammonolysis. J Nanopart Res 16, 2805 (2014). https://doi.org/10.1007/s11051-014-2805-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2805-4

Keywords

Navigation