Skip to main content
Log in

Convenient synthesis of nanocrystalline powders of phase-pure manganese nitride η-Mn3N2

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Manganese bis(trimethylsilyl)amide Mn[N(Si(CH3)3)2]2 was used as a convenient material precursor to prepare pure manganese nitride nanopowders with reaction-controlled average crystallite sizes. The precursor was first reacted with liquid ammonia under reflux conditions and the resulting by-product was pyrolyzed under an ammonia flow at temperatures in the range 150–900 °C. The powder products were characterized mainly by powder X-ray diffraction (XRD) diffraction, SEM/EDX examinations, and FT-IR and micro-Raman spectroscopies. In all cases, a pure phase of nanocrystalline η-Mn3N2 was detected by XRD as the exclusive manganese nitride product. The compound’s nanopowders were extremely reactive toward air. Upon oxidation, they formed either MnO for a relatively better crystallized nitride from higher synthesis temperatures or Mn3O4 after self-ignition of a poorly crystalline nitride from a lower synthesis temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gall D, Petrov I, Desjardins P, Greene JE (1999) Microstructural evolution and Poisson ratio of epitaxial ScN grown on TiN(001)/MgO(001) by ultrahigh vacuum reactive magnetron sputter deposition. J Appl Phys 86:5524–5529

    Article  Google Scholar 

  2. Smith AR, Al-Brithen HAH, Ingram DC, Gall D (2001) Molecular beam epitaxy control of the structural, optical, and electronic properties of ScN(001). J Appl Phys 90:1809–1816

    Article  Google Scholar 

  3. Suzuki K, Kaneko T, Yoshida H, Obi Y, Fujimori H, Morita H (2000) Crystal structure and magnetic properties of the compound MnN. J Alloy Compd 306:66–71

    Article  Google Scholar 

  4. Leineweber A, Niewa R, Jacobs H, Kockelmann W (2000) The manganese nitrides η-Mn3N2 and θ-Mn6N5 + x: nuclear and magnetic structures. J Mater Chem 10:2827–2834

    Article  Google Scholar 

  5. Feng WJ, Sun NK, Du J, Zhang Q, Liu XG, Deng YF, Zhang ZD (2008) Structural evolution and magnetic properties of Mn–N compounds. Sol State Commun 148:199–202

    Article  Google Scholar 

  6. Ohno H (1998) Making nonmagnetic semiconductors ferromagnetic. Science 281:951–955

    Article  Google Scholar 

  7. Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287:1019–1022

    Article  Google Scholar 

  8. Janik JF, Drygaś M, Czosnek C, Kaminska M, Palczewska M, Paine RT (2004) Carbothermally-assisted aerosol synthesis of semiconducting materials in the system GaN/Mn. J Phys Chem Sol 65:639–645

    Article  Google Scholar 

  9. Gosk JB, Drygaś M, Janik JF, Palczewska M, Paine RT, Twardowski A (2006) Magnetic and optical properties of (GaMn)N nanocrystalline powders prepared by the aerosol-assisted vapour phase synthesis and anaerobic imide route methods. J Phys D Appl Phys 39:3717–3725

    Article  Google Scholar 

  10. Drygas M, Janik JF, Bucko MM, Gosk J, Twardowski A (2015) Structural and magnetic properties of GaN/Mn nanopowders prepared by an anaerobic synthesis route. RSC Adv. 5:37298–37313

    Article  Google Scholar 

  11. Drygas M, Janik JF, Gosk J, Gierlotka S, Palosz B, Twardowski A (2016) Structural and magnetic properties of ceramics prepared by high-pressure high-temperature sintering of manganese-doped gallium nitride nanopowders. J. Eur Ceram. Soc. 36(1033–1044):14

    Google Scholar 

  12. Nishiyama Z, Iwanaga R (1945) Nippon Kinzoku Gakkai-Shi 9:1

    Google Scholar 

  13. Gokcen NA (1990) The Mn–N (manganese-nitrogen) system. Bull Alloy Phase Diagrams 11:33–42

    Article  Google Scholar 

  14. Niewa R (2002) Nitridocompounds of manganese: manganese nitrides and nitridomanganates. Z Kristallogr 217:8–23

    Google Scholar 

  15. Takei WJ, Heikes RR, Shirane G (1962) Magnetic structure of Mn4N-type compounds. Phys Rev 125:1893–1897

    Article  Google Scholar 

  16. Lihl F, Ettmayer P, Kutzelnigg A (1962) The system manganese-nitrogen. Z Metallk 53:715–721

    Google Scholar 

  17. Huang JW, Li J, Peng H (2007) Microwave synthesis of manganese nitride. Powder Metall 50:137–141

    Article  Google Scholar 

  18. Kreiner G, Jacobs H (1992) Magnetische structure von η-Mn3N2. J Alloy Compd 183:345–362

    Article  Google Scholar 

  19. Otsuka N, Hanawa Y, Nagakura S (1977) Crystal structure and phase transition of Mn6N5 studied by electron diffraction. Phys Stat Sol A 43:127–129

    Article  Google Scholar 

  20. Yang H, Al-Brithen H, Smith AR, Borchers JA, Cappelletti RL, Vaudin MD (2001) Structural and magnetic properties of h-phase manganese nitride films grown by molecular-beam epitaxy. Appl Phys Lett 78:3860–3862

    Article  Google Scholar 

  21. Yang R, Haider MB, Yang H, Al-Brithen H, Smith AR (2005) Scanning tunneling microscopy study of the structural phase transformation in manganese nitride: θ-MnN→η-Mn3N2. Appl Phys A 81:695–700

    Article  Google Scholar 

  22. Suzuki K, Morita H, Kaneko T, Yoshida H, Fujimori H (1993) Crystal structure and magnetic properties of the compound FeN. J Alloy Compd 201:11–16

    Article  Google Scholar 

  23. Spicer TS, Spicer CW, Cloud NA, Davis LM, Girolami GS, Abelson JR (2013) Low-temperature CVD of η-Mn3N2-x from bis[di(tert-butyl)amido]manganese(II) and ammonia. J Vac Sci Technol A 31:030604

    Article  Google Scholar 

  24. Hasegawa M, Yagi T (2005) Systematic study of formation and crystal structure of 3d-transition metal nitrides synthesized in a supercritical nitrogen fluid under 10 GPa and 1800 K using diamond anvil cell and YAG laser heating. J Alloys Compd 403:131–142

    Article  Google Scholar 

  25. Choi J, Gillan EG (2009) Solvothermal metal azide decomposition routes to nanocrystalline metastable nickel, iron, and manganese nitrides. Inorg Chem 48:4470–4477

    Article  Google Scholar 

  26. Parkin IP, Rowley AT (1995) Formation of transition-metal nitrides from the reactions of lithium amides and anhydrous transition-metal chlorides. J Mater Chem 5:909–912

    Article  Google Scholar 

  27. Imran S, Shah U, Hector AL, Li XJ, Owen JR (2015) Solvothermal synthesis and electrochemical charge storage assessment of Mn3N2. J Mater Chem A 3:3612–3619

    Article  Google Scholar 

  28. Baxter DV, Chisholm MH, Gama GJ, DiStasi VF, Hector AL, Parkin IP (1996) Molecular routes to metal carbides, nitrides, and oxides. 2. Studies of the ammonolysis of metal dialkylamides and hexamethyldisilylamides. Chem Mater 8:1222–1228

    Article  Google Scholar 

  29. Bradley DC, Hursthouse MB, Malik KMA, Moseler R (1978) The crystal molecular structure of “bis(hexamethyldisilylamido) manganese”. Transit Metal Chem 3:253–254

    Article  Google Scholar 

  30. Fröhling B, Kreiner G, Jacobs H (1999) Synthese und kristallstruktur von mangan(II)- und zinkamid, Mn(NH2)2 und Zn(NH2)2. Z Anorg Allg Chem 625:211–216

    Article  Google Scholar 

  31. Bergstrom FW (1924) Potassium ammono-aluminate, potassium ammonomanganite and manganous amide. J Am Chem Soc 46:1545–1558

    Google Scholar 

  32. Yarema M, Caputo R, Kovalenko MV (2013) Precision synthesis of colloidal inorganic nanocrystals using metal and metalloid amides. Nanoscale 5:8398–8410

    Article  Google Scholar 

  33. Janik JF, Wells RL (1996) Gallium imide, {Ga(NH)3/2}n, a new polymeric precursor for gallium nitride powders. Chem Mater 8:2708–2711

    Article  Google Scholar 

  34. Wells RL, Janik JF, Gladfelter WL, Coffer JL, Johnson MA, Steffey BD (1997) New precursor routes to nanocrystalline cubic/hexagonal gallium nitride, GaN. Mater Res Soc Symp Proc 468:39–45

    Article  Google Scholar 

  35. Drygaś M, Olejniczak Z, Grzanka E, Bućko MM, Paine RT, Janik JF (2008) Probing the structural/electronic diversity and thermal stability of various nanocrystalline powders of gallium nitride GaN. Chem Mater 20:6816–6828

    Article  Google Scholar 

  36. Janik JF, Wells RL, Coffer JL, John JVSt, Pennington WT, Schimek GL (1998) Nanocrystalline aluminum nitride and aluminum/gallium nitride nanocomposites via transamination of [M(NMe2)3]2, M = Al, Al/Ga (1/1). Chem Mater 10:1613–1622

    Article  Google Scholar 

  37. Grzanka E, Stelmakh S, Palosz B, Gierlotka S, Proffen T, Drygaś M, Janik JF (2011) Core-shell structure of nanocrystalline AlN in real and reciprocal spaces. Z Kristallogr Proc 1:235–240

    Google Scholar 

  38. Drygaś M, Czosnek C, Janik JF (2006) Book of abstracts of NANOMAT 2006 – international workshop on nanostructured materials.Antalya, June 21–23, pp 201

  39. Stelmakh S, Grzanka E, Gierlotka S, Janik JF, Drygaś M, Lathe C, Palosz B (2011) Compression and thermal expansion of nanocrystalline TiN. Z Kristallogr Proc 1:241–246

    Google Scholar 

  40. Andersen RA, Faegri KJr, Green JC, Haaland A, Lappert MF, Leung WP, Rypdal K (1988) Synthesis of bis[bis(trimethylsilyl)amido]iron(II). Structure and bonding in M[N(SiMe3)2]2 (M = manganese, iron, cobalt): two-coordinate transition-metal amides. Inorg Chem 27:1782–1786

    Article  Google Scholar 

  41. Olmstead MM, Power PP, Shoner SC (1991) Three-coordinate iron complexes. Inorg Chem 30:2547–2551

    Article  Google Scholar 

  42. Baxter DV, Chisholm MH, Gama GJ, Hector AL, Parkin IP (1995) Low pressure chemical vapor deposition of metallic films of iron, manganese, cobalt, copper, germanium and tin employing bis(trimethyl)silylamido complexes, M(N(SiMe3)2)n. Chem Vapor Depos 1:49–51

    Article  Google Scholar 

  43. Maya L (1986) Synthetic approach to aluminum nitride via pyrolysis of a precursor. Adv Ceram Mater 1:150–153

    Article  Google Scholar 

  44. Hector AL, Parkin IP (1995) Magnesium and calcium nitrides as nitrogen sources in metathetical reactions to produce metal nitrides. Chem Mater 7:1728–1733

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by Polish NCN Grant 2011/01/B/ST5/06592.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Drygaś.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drygaś, M., Bućko, M.M., Musiał, M. et al. Convenient synthesis of nanocrystalline powders of phase-pure manganese nitride η-Mn3N2 . J Mater Sci 51, 8177–8186 (2016). https://doi.org/10.1007/s10853-016-0094-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0094-2

Keywords

Navigation