Skip to main content
Log in

Biogenesis of TiO2 nanoparticles using endophytic Bacillus cereus

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Synthesis of nanoparticles has attracted a lot of attention due to their unusual optical, photoelectrochemical, and electronic properties. Semi conductor TiO2 nanoparticles are known to be effective UV absorbers or photocatalysts, thereby making them important in environmental purification. The present study reports a simple, green, and easily reproducible method for the synthesis of TiO2 NPs using the endophytic bacteria Bacillus cereus under ambient conditions. The synthesized TiO2 NPs were characterized for their size, shape, and crystalline nature using various instrumental analyses. Anatase TiO2 NPs were formed whose size was in the range of 69–140 nm which was confirmed further by XRD analysis. The surface topology was studied by AFM analysis, and the SEM micrographs displayed the 2D images of the TiO2 NPs. EDX analysis was performed to confirm the presence of the elements in the sample. Phytotoxic analysis of these nanoparticles was carried out, and it was found that germination rate was not affected but there is a decrease in the length of the roots by around 40 %. But these TiO2 nanoparticles did not show significant cytotoxicity in normal cells (Vero) compared to cancer cells (Hep2). This study offers a feasible and ecofriendly alternative to the existing syntheses methods and suggests a plausible means for the large-scale production of TiO2 NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad R, Khatoon N, Meryam S (2013) Biosynthesis, characterization and application of TiO2 nanoparticles in biocatalysis and protein folding. J Protein Proteomic 4(2):115–121

  • Ayyub P, Palkar VR, Chattopadhyay S, Multani M (1995) Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys Rev B 51:6135–6138

    Article  Google Scholar 

  • Baker S, Satish S (2012) Endophytes: toward a vision in synthesis of nanoparticlefor future therapeutic agents. Int J Bio-Inorg Hybd Nanomat 1:67–77

    Google Scholar 

  • Banker J (1992) Amide modes and protein conformation. Biochim Biophys Acta 1120:123–143

    Article  Google Scholar 

  • Bansal V, Rautaray D, Bharde A, Ahire AK, Sanyal A, Ahmad A, Sastry M (2005) Fungus mediated biosynthesis of silica and titania particles. J Mater Chem 15:2583–2589

    Article  Google Scholar 

  • Bocarando-Chacon JG, Cortez-Valadez M, Vargas-Vazquez D, Rodríguez Melgarejo F, Flores-Acosta M, Mani-Gonzalez PG, Leon-Sarabia E, Navarro-Badilla A, Ramírez-Bon R (2014) Raman bands in Ag nanoparticles obtained in extract of Opuntia ficus-indica plant. Phys E 59:15–18

    Article  Google Scholar 

  • Castiglione MR, Giorgetti L, Geri C, Cremonini R (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res 13:2443–2449

  • Cortez-Valadez M, Vargas-Ortiza A, Rojas-Blanco L, Arizpe-Chávez H, Flores-Acosta M, Ramírez-Bon R (2013) Additional active Raman modes in α-PbO nanoplates. Phys E 53:146–149

    Article  Google Scholar 

  • Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley, London

    Google Scholar 

  • Dechsakulthorn F, Hayes A, Bakand S, Joeng L, Winder C (2007) In vitro cytotoxicity assessment of selected nanoparticles using human skin fibroblasts AATEX 14, Special Issue, 397–400. In: Proceedings 6th World Congress on Alternatives & Animal Use in the Life Sciences, Tokyo, Japan

  • Elliott A, Ambrose EJ (1950) Structure of synthetic polypeptides. Nature 165:921–922

    Article  Google Scholar 

  • Feizi H, Kamali M, Jafari L, Moghaddam PR (2013) Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91(4):506–511. doi:10.1016/j

    Article  Google Scholar 

  • Franklin MN, Rogers JNR C, Apte CS, Batley EG, Gadd EG, Casey SP S (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490. doi:10.1021/es071445r

    Article  Google Scholar 

  • Hema M, Arasi AY, Tamilselvi P, Anbarasan R (2013) Titania nanoparticles synthesized by sol–gel technique. Chem Sci Trans 2(1):239–245. doi:10.7598/cst2013.344

    Article  Google Scholar 

  • Jayaseelan C, Rahuman AA, Roopan SM, Kirthi AV, Venkatesan J, Kim SK, Iyappan M, Siva C (2013) Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 107:82–89. doi:10.1016/j.saa.2012.12.083

    Article  Google Scholar 

  • Jha A, Prasad K (2010) Biosynthesis of metal and oxide nanoparticles using Lactobacilli from yoghurt and probiotic spore tablets. Microbiol Biotechnol J 5(3):285–291

    Google Scholar 

  • Jing Z, Wang C, Wang G, Li W, Lu D (2010) Preparation and antibacterial activities of undoped and palladium doped titania nanoparticles. J Sol–Gel Sci Technol 56(2):121

    Article  Google Scholar 

  • Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Elango G, Zahir AA, Kamaraj C, Bagavan A (2011) Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis. Mat Lett 65:2745–2747

  • Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39(8):549–559

    Article  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    Article  Google Scholar 

  • Krimm S, Bandekar J (1986) Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem 38:181–364

    Article  Google Scholar 

  • León ER, Palomares RI, Navarro RE, Urbina RH, Tánori J, Palomares CI, Maldonado A (2013) Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res Lett 8:318–339

    Article  Google Scholar 

  • Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011: 1–16. http://dx.doi.org/10.1155/2011/270974

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250. doi:10.1016/j.envpol.2007.01.016

    Article  Google Scholar 

  • Ma X, Lee GJ, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061. doi:10.1016/j.scitotenv.2010.03.031

    Article  Google Scholar 

  • Malarkodi C, Chitra K, Rajeshkumar S, Gnanajobitha G, Paulkumar K, Vanaja M, Annadurai G (2013) Novel eco-friendly synthesis of titanium oxide nanoparticles by using Planomicrobium sp. and its antimicrobial evaluation. Der Pharmacia Sin 4(3):59–66

    Google Scholar 

  • Miyazawa T, Shimanouchi T, Mizushima S (1956) Characteristic infrared bands of monosubstituted amides. J Chem Phys 24:408

    Article  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  Google Scholar 

  • Rajakumara G, Abdul Rahumana A, Mohana Roopanb S, Gopiesh Khannac V, Elangoa G, Kamaraja C, Abduz Zahira A, Velayuthama K (2012) Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta Part A 91:23–29

    Article  Google Scholar 

  • Rodriguez JA (2002) Orbital-band interactions and the reactivity of molecules on oxide surfaces: from explanations to predictions. Theor Chem Acc 107:117

    Article  Google Scholar 

  • Salvatore MD, Carafa AM, Carratù G (2008) Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: a comparison of two growth substrates. Chemosphere 73:1461–1464

    Article  Google Scholar 

  • Sanghi R, Verma P (2009) Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresour Technol 100:501–504. doi:http://dx.doi.org/10.1016/j.biortech.2008.05.048

  • Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15–48

    Article  Google Scholar 

  • Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Leea EJ (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67

    Article  Google Scholar 

  • Swetha Sunkar and Valli Nachiyar (2012a) Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac J Trop Biomed 2:953–959

    Article  Google Scholar 

  • Swetha Sunkar and Valli Nachiyar (2012b) Microbial synthesis and characterization of silver nanoparticles using the endophytic bacterium Bacillus cereus: a novel source in the benign synthesis. Glob J Med Res 12:43–49

    Google Scholar 

  • Wang LS and Hong RY (2011) Synthesis, surface modification and characterisation of nanoparticles, advances in nanocomposites In: Boreddy Reddy (Ed) synthesis, characterization and industrial applications, Dr. ISBN: 978-953-307-165-7, InTech

  • Yao H and Kimura K (2007) Modern research and educational topics in microscopy. A. Méndez-Vilas and J. Díaz (Eds) 568 ©FORMATEX

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–91. doi:10.1385/bter:104:1:083

Download references

Acknowledgments

The authors would like to thank the Sathyabama University for the support offered for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Valli Nachiyar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunkar, S., Nachiyar, C.V., Lerensha, R. et al. Biogenesis of TiO2 nanoparticles using endophytic Bacillus cereus . J Nanopart Res 16, 2681 (2014). https://doi.org/10.1007/s11051-014-2681-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2681-y

Keywords

Navigation