Skip to main content
Log in

NanoRiskCat: a conceptual tool for categorization and communication of exposure potentials and hazards of nanomaterials in consumer products

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

An Erratum to this article was published on 30 June 2017

Abstract

The literature on nano(eco)toxicology is growing rapidly and has become increasingly difficult to interpret. We have developed a systematic tool called NanoRiskCat that can support companies and regulators in their first-tier assessment and communication on what they know about the hazard and exposure potential of consumer products containing engineered nanomaterials. The final outcome of NanoRiskCat is communicated in the form of a short-title describing the intended use and five colored dots. The first three dots refer to the qualitative exposure potential for professional end-users, consumers and the environment, whereas the last two refers to the hazard potential for humans and the environment. Each dot can be assigned one of four different colors, i.e. red, yellow, green, and gray indicating high, medium, low, and unknown, respectively. In this paper, we first introduce the criteria used to evaluate the exposure potential and the human and environmental hazards of specific uses of the nanoproduct. We then apply NanoRiskCat to eight different nanoproducts. The human and environmental exposure potential was found to be high (i.e., red) for many of the products due to direct application on skin and subsequent environmental release. In the NanoRiskCat evaluation, many of the nanomaterials achieve a red human and environmental hazard profile as there is compelling in vivo evidence to associate them with irreversible effects, e.g., carcinogenicity, respiratory, and cardiovascular effects, etc., in laboratory animals. A significant strength of NanoRiskCat is that it can be used even in cases where lack of data is prominent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40(19):3527–3532

    Article  Google Scholar 

  • ANSES (2010) Development of a specific Control Banding Tool for Nanomaterials. http://www.anses.fr/Documents/AP2008sa0407RaEN.pdf Accessed 12 June 2013

  • Arora S, Jain J, Rajwade JM, Paknikar KM (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179(2):93–100

    Article  Google Scholar 

  • AshaRani PV, Low Kah MG, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Article  Google Scholar 

  • Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5(16):1897–1910

    Article  Google Scholar 

  • Burdett G, Bard D, Kelly A, Thorpe A (2013) The effect of surface coatings on the dustiness of a calcium carbonate nanopowder. J Nanopart Res 15:1311

    Article  Google Scholar 

  • CCA (2008) Small is different: a science perspective on the regulatory challenges of the nanoscale. The Council of Canadian Academies, Ottawa

    Google Scholar 

  • Cha K, Hong HW, Choi YG, Lee MJ, Park JH, Chae HK, Ryu G, Myung H (2008) Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol Lett 30(11):1893–1899

    Article  Google Scholar 

  • Chen HW, Su SF, Chien CT, Lin WH, Yu SL, Chou CC, Chen JJ, Yang PC (2006) Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB J 20(13):2393–2395

    Article  Google Scholar 

  • Chen Z, Meng H, Xing G, Yuan H, Zhao F, Liu R, Chang X, Gao X, Wang T, Jia G, Ye C, Chai Z, Zhao Y (2008) Age-related differences in pulmonary and cardiovascular responses to SiO2 nanoparticle inhalation: nanotoxicity has susceptible population. Environ Sci Technol 42(23):8985–8992

    Article  Google Scholar 

  • Dahmann D, Monz C (2011) Determination of dustiness of nanostructured materials. Gefahrstoffe Reinhalt Luft 71(11–12):481–487

    Google Scholar 

  • Davis JM (2007) How to assess the risks of nanotechnology: learning from past experience. J Nanosci Nanotechnol 7(2):402–409

    Article  Google Scholar 

  • De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJAM, Geertsma RE (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29(12):1912–1919

    Article  Google Scholar 

  • Dobrovolskaia MA, McNeil SE (2013) Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release 172(2):456–466

    Article  Google Scholar 

  • Dufour EK, Kumaravel T, Nohynek GJ, Kirkland D, Toutain H (2006) Clastogenicity, photo-clastogenicity or pseudo-photo-clastogenicity: Genotoxic effects of zinc oxide in the dark, in pre-irradiated or simultaneously irradiated Chinese hamster ovary cells. Mutat Res 607(2):215–224

    Article  Google Scholar 

  • ECHA (2008) Guidance on information requirements and chemical safety assessment Chapter R7a: endpoint specific guidance. http://echa.europa.eu/documents/10162/13632/information_requirements_r7a_en.pdf

  • ECHA (2010) Guidance on information requirements and chemical safety assessment Chapter R12 Use descriptor system Version: 2 March 2010. http://echa.europa.eu/documents/10162/13632/information_requirements_r12_en.pdf. Accessed 5 June 2013

  • ECHA 2012 Guidance on information requirements and chemical safety assessment Chapter R.11: PBT Assessment. http://echa.europa.eu/documents/10162/13632/information_requirements_r11_en.pdf. Accessed 28 Nov 2013

  • ECHA 2013 CLP. http://echa.europa.eu/web/guest/regulations/clp. Accessed 5 June 2013

  • EEA (2001) Late lessons from early warnings: the precautionary principle 1896–2000. European Environment Agency, Copenhagen

    Google Scholar 

  • Ferin J, Oberdorster G, Penney DP (1992) Pulmonary retention of ultrafine and fine particles in rats. Am J Resp Cell Mol Biol 6(5):535–542

    Article  Google Scholar 

  • Franco A, Hansen SF, Olsen SI, Butti L (2007) Limits and prospects of the “Incremental Approach” and the European legislation on the management of risks related to nanomaterials. Reg Toxicol Pharmacol 48:171–183

    Article  Google Scholar 

  • Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy IM, Barakat AI (2007) Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 115(3):403–409

    Article  Google Scholar 

  • Golanski L, Guiot A, Pras M, Malarde M, Tardif F (2012) Release-ability of nano fillers from different nanomaterials (toward the acceptability of nanoproduct). J Nanopart Res 14:7. doi:10.1007/s11051-012-0962-x

    Article  Google Scholar 

  • Grieger KD, Hansen SF, Linkov I, Baun A (2012) Environmental risks of nanomaterials: review and evaluation of frameworks. Nanotoxicol 6(2):196–212

    Article  Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27(9):1972–1978

    Article  Google Scholar 

  • Grigg J, Tellabati A, Rhead S, Almeida GM, Higgins JA, Bowman KJ, Jones GD, Howes PB (2009) DNA damage of macrophages at an air–tissue interface induced by metal nanoparticles. Nanotoxicology 3(4):348–354

    Article  Google Scholar 

  • Hagendorfer H, Lorenz C, Kaegi R, Sinnet B, Gehrig R, Goetz NV, Scheringer M, Ludwig C, Ulrich A (2010) Size-fractionated characterization and quantification of nanoparticle release rates from a consumer spray product containing engineered nanoparticles. J Nanopart Res 12(7):2481–2494

    Article  Google Scholar 

  • Halappanavar S, Jackson P, Williams A, Jensen KA, Hougaard KS, Vogel U, Yauk CL, Wallin H (2011) Pulmonary response to surface-coated nanotitanium dioxide particles includes induction of acute phase response genes, inflammatory cascades, and changes in microRNAs: a toxicogenomic study. Environ Mole Mutagen 52(6):425–439. doi:101002/em20639

    Article  Google Scholar 

  • Han B, Karim MN (2009) Cytotoxicity of aggregated fullerene C60 particles on CHO and MDCK cells. Scanning 30(2):213–220

    Article  Google Scholar 

  • Han XL, Corson N, Wade-Mercer P, Gelein R, Jiang JK, Sahu M, Biswas P, Finkelstein JN, Elder A, Oberdorster G (2013) Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data. Toxicology 297(1–3):1–9

    Article  Google Scholar 

  • Hankin SM, Peters SAK, Poland CA, Hansen SF, Holmqvist J, Ross BL, Varet J, Aitken RJ (2011) Specific advice on fulfilling information requirements for nanomaterials under REACH (RIP-oN 2): final project report. Document reference RNC/RIP-oN2/FPR/1/FINAL. Brussels: European Commission. http://ec.europa.eu/environment/chemicals/nanotech/pdf/report_ripon2.pdf. Accessed 28 Nov 2013

  • Hansen LE, Jensen KA, Johansen A (2012) Nano-silver dose-response effects on nematode Caernorhabditis elegans. Ecotoxicol Environ Safety 80:216–223

    Article  Google Scholar 

  • Hansen SF (2009) Regulation and risk assessment of nanomaterials: too little, too late? Dissertation, Technical University of Denmark

  • Hansen SF, Alstrup Jensen K, Baun A (2011) NanoRiskCat: a conceptual model for risk classification of nanomaterials. Environmental project no. 1372 2011. Danish Environmental Protection Agency, Copenhagen

  • Hansen SF, Larsen BH, Olsen SI, Baun A (2007) Categories and hazard identification scheme of nanomaterials. Nanotoxicology 3:243–250

    Article  Google Scholar 

  • Hansen SF, Michelson E, Kamper A, Borling P, Stuer-Lauridsen F, Baun A (2008) Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology 17(5):438–447

    Article  Google Scholar 

  • Hansen SF, Howard CV, Martuzzi M, Depledge M (2013a) Nanotechnology and human health: scientific evidence and risk governance. Report of the WHO expert meeting 10–11 Dec 2012, Bonn, Germany. Copenhagen, WHO Regional Office for Europe, 2013. http://www.euro.who.int/__data/assets/pdf_file/0018/233154/e96927.pdf

  • Hansen SF, Nolde Nielsen K, Knudsen N, Grieger KD, Baun A (2013b) Operationalization and application of ‘‘early warning signs’’ to screen nanomaterials for harmful properties. Environ Sci 15:190–203

    Google Scholar 

  • Heinrich U, Fuhst R, Rittinghausen S, Creutzenberg O, Bellmann B, Koch W, Levsen K (1995) Chronic inhalation exposure of Wistar rats and two different strains of mice to diesel engine exhaust, carbon black, and titanium dioxide. Inhal Toxicol 7(4):533–556

    Article  Google Scholar 

  • Helfenstein M, Miragoli M, Rohr S, Muller L, Wick P, Mohr M, Gehr P, Rothen-Rutishauser B (2008) Effects of combustion-derived ultrafine particles and manufactured nanoparticles on heart cells in vitro. Toxicology 253(1):70–78

    Article  Google Scholar 

  • Höck J, Epprecht T, Hofmann H, Höhner K, Krug H, Lorenz C, Limbach L, Gehr P, Nowack B, Riediker M, Schirmer K, Schmid B, Som C, Stark W, Studer C, Ulrich A, von Götz N, Wengert S, Wick P (2010) Guidelines on the precautionary matrix for synthetic nanomaterials federal office of public health and federal office for the environment, Berne 2010, Version 2. http://www.bag.admin.ch/nanotechnologie/12171/12174. Accessed 17 May 2010

  • Hougaard KS, Jackson P, Jensen KA, Sloth JJ, Löschner K, Larsen EH, Birkedal RK, Vibenholt A, Boisen AMZ, Wallin H, Vogel U (2010) Effects of prenatal exposure to surface-1 coated nanosized titanium dioxide (UV-Titan) a study in mice. Particle Fibre Toxicol 7:16. doi:10.1186/1743-8977-7-16

  • Hristozov DR, Gottardo S, Cinelli M, Isigonis P, Zabeo A, Critto A, Van Tongeren M, Tran L, Marcomini A (2013) Application of a quantitative weight of evidence approach for ranking and prioritising occupational exposure scenarios for titanium dioxide and carbon nanomaterials. Nanotoxicology. doi:10.3109/17435390.2012.760013

    Google Scholar 

  • Hristozov DR, Zabeo A, Foran C, Isigonis P, Critto A, Marcomini A, Linkov I (2012) A weight of evidence approach for hazard screening of engineered nanomaterials. Nanotoxicology. doi:10.3109/17435390.2012.750695

    Google Scholar 

  • IARC (2010) IARC monographs on the evaluation of carcinogenic risks to humans, vol 93 Carbon black, titanium dioxide, and talc. http://monographs.iarc.fr/ENG/Monographs/vol93. Accessed 6 June 2013

  • Jackson P, Jacobsen NR, Baun A, Birkedal R, Kühnel D, Jensen KA, Vogel U, Wallin H (2013) Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Central J 7:154

    Article  Google Scholar 

  • Jensen KA, Koponen IK, Clausen PA, Schneider T (2009) Dustiness behaviour of loose and compacted bentonite and organoclay powders: what is the difference in exposure risk? J Nanopart Res 11(1):133–146

    Article  Google Scholar 

  • Jensen KA, Saber AT, Kristensen HV, Koponen IK, Walin H (2013) NanoSafer version 1.1: A web-based precautionary risk assessment tool for manufactured nanomaterials using first order modeling (In prep.)

  • Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V (2010) Review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40(4):328–346

    Article  Google Scholar 

  • Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M (2010) Release of silver nanoparticles from outdoor facades. Environ Poll 158(9):2900–2905

    Article  Google Scholar 

  • Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M (2008) Synthetic TiO(2) nanoparticles emission from exterior facades into the aquatic environment. Environ Poll 156(2):233–239

    Article  Google Scholar 

  • Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732

    Article  Google Scholar 

  • Kennedy AJ, Hull MS, Steevens JA, Dontsova KM, Chappell MA, Gunter JC, Weiss CA Jr (2008) Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environ Toxicol Chem 27(9):1932–1941

    Article  Google Scholar 

  • Kermanizadeh A, Pojana G, Gaiser B, Birkedal RB, Wallin H, Jensen KA, Sellergren B, Hutchison, Marcomini A, Stone V (2012) In vitro assessment of engineered nanomaterials using a hepatocyte cell line: cytotoxicity, pro-inflammatory cytokines and functional markers: cytotoxicity, pro-inflammatory cytokines and function markers. Nanotoxicology 7(3):301–313

    Article  Google Scholar 

  • Kim YS, Kim JS, Cho HS, Rha DS, Park JD, Choi BS, Lim R, Chang HK, Chung YH, Kwon IH, Jeong J, Han BS, Yu IJ (2008) Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague–Dawley rats. Inhal Toxicol 20:575–583

    Article  Google Scholar 

  • Komatsu T, Tabata M, Kubo-Irie M, Shimizu T, Suzuki KI, Nihei Y, Takeda K (2008) The effects of nanoparticles on mouse testis Leydig cells in vitro. Toxicol In Vitro 22(8):1825–1831

    Article  Google Scholar 

  • Koponen IK, Jensen KA, Schneider T (2011) Comparison of dust released from sanding conventional and nanoparticle-doped wall and wood coatings. J Exp Sci Environ Epidemiol 21(4):408–418

    Article  Google Scholar 

  • Larese FF, D’Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, Maina G (2009) Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 255(1–2):33–37

    Article  Google Scholar 

  • Larsen ST, Roursgaard M, Jensen KA, Nielsen GD (2010) Nanotitanium dioxide particles promote allergic sensitization and lung inflammation in mice. Basic Clin Pharmacol Toxicol 196(2):114–117

    Article  Google Scholar 

  • Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL (2008) Bacterial effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42:4927–4933

    Article  Google Scholar 

  • Lee KJ, Nallathamby PD, Browning LM, Osgood CL, Xu XHN (2007) In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1(2):133–143

    Article  Google Scholar 

  • Li T, Albee B, Alemayehu M, Diaz R, Ingham L, Kamal S, Rodriguez M, Whaley Bishnoi S (2010) Comparative toxicity study of Ag, Au, and Ag–Au bimetallic nanoparticles on Daphnia magna. Anal Bioanal Chem 398(2):689–700

    Article  Google Scholar 

  • Linkov I, Satterstrom FK, Steevens J, Ferguson E, Pleus RC (2007) Multi-criteria decision analysis and environmental risk assessment for nanomaterials. J Nanopart Res 9:543–554

    Article  Google Scholar 

  • Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40:4346–4435

    Article  Google Scholar 

  • Long TC, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, Hester S, Lowry GV, Veronesi B (2007) Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect 115:1631–1637

    Article  Google Scholar 

  • Lorenz C, Windler L, von Goetz N, Lehmann RP, Schuppler M, Hungerbuehler K, Heuberger M, Nowack B (2012) Characterization of silver release from commercially available functional (nano)textiles. Chemosphere 89(7):817–824

    Article  Google Scholar 

  • Mikkelsen SH, Hansen E, Christensen TB, Baun A, Hansen SF, Binderup M-L (2011) Survey on basic knowledge about exposure and potential environmental and health risks for selected nanomaterials. Environmental project no. 1370 2011. Danish ministry of the environment Danish environmental protection agency, Copenhagen

  • Nielsen GD, Roursgaard M, Jensen KA, Poulsen SS, Larsen ST (2008) In vivo biology and toxicology of fullerenes and their derivatives: a minireview. Basic Clin Pharmacol Toxicol 103(3):197–208

    Article  Google Scholar 

  • NIOSH (2011) Current intelligence bulletin 63 occupational exposure to titanium dioxide. Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health, Washington, DC. Accessed 15 July 2010

  • NIOSH (2011) NIOSH Current intelligence bulletin occupational exposure to carbon nanotubes and nanofibers Department Of Health And Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health, Washington, DC

  • Nørgaard AW, Jensen KA, Janfelt C, Lauritsen FR, Clausen PA, Wolkoff P (2009) Release of VOCs and particles during use of nanofilm spray products. Environ Sci Technol 43:7824–7830

    Article  Google Scholar 

  • Nymark P, Catalán J, Suhonen S, Järventaus H, Birkedal R, Clausen PA, Jensen KA, Vippola M, Savolainen K, Norppa H (2012) Genotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in BEAS 2B cells. Toxicology. doi:10.1016/j.tox.2012.09.014

    Google Scholar 

  • OECD (2011) OECD guidelines for the testing of chemicals, section 3: degradation and accumulation. http://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-3-degradation-and-accumulation_2074577x. Accessed 25 Apr 2011

  • Paik SY, Zalk DM, Swuste P (2008) Application of a pilot control banding tool for risk level assessment and control of nanoparticle exposures. Ann Occup Hyg 52(6):419–428

    Google Scholar 

  • Peters K, Unger RE, Kirkpatrick CJ, Gatti AM, Monari E (2004) Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation. J Mater Sci Mater Med 15(4):321–325

    Article  Google Scholar 

  • Project on Emerging Nanotechnologies (2013) Analysis. http://www.nanotechproject.org/inventories/consumer/analysis_draft/. Accessed 12 June 2013

  • RCEP (2008) Twenty-seventh Report Novel Materials in the Environment: the case of nanotechnology Royal Commission on Environmental Pollution The Stationery Office, Norwich

  • Regulation (EC) No 1907/2006 (EC) No 1272/2008 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Official Journal of the European 1589 Union L 353/1–L 353/135

  • Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:396:0001:0849:EN:PDF. Accessed 25 March 2012

  • Renwick LC, Brown D, Clouter A, Donaldson K (2004) Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 61(5):442–447

    Article  Google Scholar 

  • Rossi EM, Pylkkänen L, Koivisto AJ, Vippola Jensen KA, Sirola K, Nykäsenoja H, Karisola P, Stjernvall T, Vanhala E, Kiilunen M, Hämeri K, Joutsensaari J, Tuomi T, Jokiniemi J, Wolff H, Savolainen K, Matikainen S, Alenius H (2010) Airway exposure to silica coated TiO2 nanoparticles induces pulmonary neutrophilia in mice. Toxicol Sci 113(2):422–433

    Article  Google Scholar 

  • Roursgaard M, Jensen KA, Poulsen SS, Jensen N-EV, Poulsen LK, Hammer M, Nielsen GD, Larsen ST (2011) Acute and subchronic airway inflammation after intratracheal instillation of quartz and TiO2 in mice. Sci World J 11:801–825

    Article  Google Scholar 

  • Saber AT, Jacobsen NR, Mortensen A, Szarek J, Jackson P, Madsen AM, Jensen KA, Koponen IK, Brunborg G, Gutzkow KB, Vogel U, Wallin H (2012a) Nanotitanium dioxide toxicity in mouse lung is reduced in sanding dust from paint. Part Fibre Toxicol 9:4. doi:10.1186/1743-8977-9-4

    Article  Google Scholar 

  • Saber AT, Koponen IK, Jensen KA, Jacobsen NR, Vogel U, Wallin H (2012b) Inflammatory and genotoxic effects of sanding dust generated from nanoparticle-containing paints and lacquers. Nanotoxicology 6(7):776–788

    Article  Google Scholar 

  • Samberg ME, Oldenburg SJ, Monteiro-Riviere NA (2010) Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect 118(3):407–413

    Article  Google Scholar 

  • Sayes CM, Reed KL, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97(1):163–180

    Article  Google Scholar 

  • Schneider T, Jensen KA (2008) Combined single drop and rotating drum dustiness test of fine to nanosized powders using a small drum. Ann Occup Hyg 52(1):23–34

    Google Scholar 

  • Scientific Committee on Health and Environmental Risks (SCHER), Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR), Scientific Committee on Consumer Safety (SCCS) (2013) Addressing the new challenges for risk assessment. European Commission, Brussels

  • Sonavane G, Tomoda K, Sano A, Ohshima H, Terada H, Makino K (2008) In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloids Surf B 65(1):1–10

    Article  Google Scholar 

  • Stebounova LV, Adamcakova-Dodd A, Kim, JS, Park H, O’Shaughnessy PT, Grassian VH, Thorne PS (2011) Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part Fibre Toxicol 8:5. doi:10.1186/1743-8977-8-5

  • Stone V, Hankin S, Aitken R, Aschberger K, Baun A, Christensen F, Fernandes T, Hansen SF, Hartmann, NB, Hutchinson G, Johnston H, Micheletti G, Peters S, Ross B, Sokull-Kluettgen B, Stark D, Tran L (2010) Engineered nanoparticles: review of health and environmental safety (ENRHES). http://ihcp.jrc.ec.europa.eu/our_activities/nanotechnology/safety_nanomaterials/ENHRES. Accessed 1 Feb 2010

  • Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Chang HK, Lee JH, Cho MH, Kelman BJ, Yu IJ (2009) Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci 108(2):452–461

    Article  Google Scholar 

  • Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Kim J, Kim TS, Chang HK, Lee EJ, Lee JH, Yu IJ (2008) Lung function changes in Sprague–Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhalation Toxicol 20:567–574

    Article  Google Scholar 

  • Tervonen T, Figueira J, Steevens J, Kim J, Linkov I (2009) Risk based classification system of nanomaterials. J Nanopart Res 11:757–766

    Article  Google Scholar 

  • Tran CL, Hankin SM, Ross B, Aitken RJ, Jones AD, Donaldson K, Stone V, Tantra R (2008) An outline scoping study to determine whether high aspect ratio nanoparticles (HARN) should raise the same concerns as do asbestos fibres. Report on DEFRA project CB0406. DEFRA, London. http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Completed=0&ProjectID=15570. Accessed 5 June 2013

  • Tsai CJ, Wu CH, Leu ML, Chen SC, Huang CY, Tsai PJ, Ko FH (2009) Dustiness test of nanopowders using a standard rotating drum with a modified sampling train. J Nanopart Res 11(1):121–131

    Article  Google Scholar 

  • Tsuchiya T, Oguri I, Yamakoshi YN, Miyata N (1996) Novel harmful effects of [60]fullerene on mouse embryos in vitro and in vivo. FEBS Lett 393(1):139–145

    Article  Google Scholar 

  • UNEP (2009) Globally harmonized system of classification and labelling of chemicals (GHS) third revised edition United Nations

  • Van Duuren-Stuurman B, Vink S, Verbist KJM, Heussen HGA, Brouwer DH, Kroese DED, Van Niftrik MFJ, Tielemans E, Fransman W (2012) Stoffenmanager Nano Version 10: a web-based tool for risk prioritization of airborne manufactured nano objects. Ann Occup Hyg 56(5):525–541

    Google Scholar 

  • Van Hoecke K, De Schamphelaere KAC, Van der Meeren P, Lucas S, Janssen CR (2008) Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: importance of surface area. Environ Toxicol Chem 27(9):1948–1957

    Article  Google Scholar 

  • Wang J, Chen C, Liu Y, Jiao F, Li W, Lao F, Li Y, Li B, Ge C, Zhou G, Gao Y, Zhao Y, Chai Z (2008) Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol Lett 183(1–3):72–80

    Article  Google Scholar 

  • Warheit DB, Carakostas MC, Kelly DP, Hartsky MA (1991) Four-week inhalation toxicity study with Ludox colloidal silica in rats: pulmonary cellular responses. Fund Appl Toxicol 16(3):590–601

    Article  Google Scholar 

  • Wohlleben W, Brill S, Meier MW, Mertler M, Cox G, Hirth S, von Vacano B, Strauss V, Treumann S, Wiench K, Ma-Hock L, Landsiedel R (2011) On the lifecycle of nanocomposites: comparing released fragments and their in-vivo hazards from three release mechanisms and four nanocomposites. Small 7(16):2384–2395

    Article  Google Scholar 

  • Wohlleben W, Meier M, Vogel S, Landsiedel R, Cox G, Hirth S, Tomovic Z (2013) Elastic CNT–polyurethane nanocomposite: synthesis, performance and assessment of fragments released during use. Nanoscale 5(1):369–380

    Article  Google Scholar 

  • Zaik D, Paik SY, Swuste P (2009) Evaluating the control banding nanotool: a qualitative risk assessment method for controlling nanoparticle exposures. J Nanopart Res 11:1685–1704

    Article  Google Scholar 

  • Zhao CM, Wang WX (2012) Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna. Nanotoxicology 6(4):361–370

    Article  Google Scholar 

  • Zhu X, Chang Y, Chen Y (2010) Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78:209–215

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully thank the Danish Environmental Protection Agency who funded development of the initial version of the NanoRiskCat. Further model developments and tests and completion of the current paper was completed as part of: (1) the Danish Centre for Nanosafety’ funded by the Danish Working Environment Research Foundation (Grant No. 20110092173/3); (2) the Velux Foundation “Better regulation of Chemicals”-project (Project No. VKR022070), and (3) the European Research Council through the Starting Grant EnvNano (Grant No. 281579) for funding the final development of NRC. Dr. Nanna B. Hartmann is thanked for constructive discussions and the design of icons for the NRC framework.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Foss Hansen.

Additional information

An erratum to this article can be found online at http://dx.doi.org/10.1007/s11051-017-3909-4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, S.F., Jensen, K.A. & Baun, A. NanoRiskCat: a conceptual tool for categorization and communication of exposure potentials and hazards of nanomaterials in consumer products. J Nanopart Res 16, 2195 (2014). https://doi.org/10.1007/s11051-013-2195-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2195-z

Keywords

Navigation