Skip to main content
Log in

Lanthanide-functionalized silver nanoparticles for detection of an anthrax biomarker and test paper fabrication

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

It is highly desirable to develop a simple and sensitive analytical method for detection of anthrax biomarker (dipicolinic acid, DPA) because of its dangerous nature. In this work, we developed a fluorescent sensor for DPA detection based on terbium ion-functionalized silver nanoparticles with an average size of 6.7 nm (AgNPs–Tb3+). The fluorescent intensity of Tb–DPA complex on the surface of AgNPs was two times higher than that of Tb–DPA complex alone in a solution phase due to the metal-enhanced fluorescence (MEF) effect of AgNPs. The proposed fluorescent sensor exhibits excellent selectivity and high sensitivity for DPA. Importantly, a test paper for DPA detection was fabricated for the first time by the integration of AgNPs–Tb3+ onto the nitrocellulose membrane. Owing to the MEF effect of AgNPs, the lowest detectable concentration of the test paper-integrated AgNPs–Tb3+ for DPA by naked eyes is 10 times lower than that of the test paper-integrated Tb3+ alone. We believe that the presented strategy may open up new avenues to the development of portable and robust-sensing platforms based on functional hybrid materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ai K, Zhang B, Lu L (2009) Europium-based fluorescence nanoparticle sensor for rapid and ultrasensitive detection of an anthrax biomarker. Angew Chem Int Ed 48:304–308

    Article  Google Scholar 

  • Alam A-M, Kamruzzaman M, Lee S, Kim Y, Kim S, Kim G, Jo H, Kim S (2012) Determination of catecholamines based on the measurement of the metal nanoparticle-enhanced fluorescence of their terbium complexes. Microchim Acta 176:153–161

    Article  Google Scholar 

  • Aragay G, Monton H, Pons J, Font-Bardia M, Merkoci A (2012) Rapid and highly sensitive detection of mercury ions using a fluorescence-based paper test strip with an N-alkylaminopyrazole ligand as a receptor. J Mater Chem 22:5978–5983

    Article  Google Scholar 

  • Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16:55–62

    Article  Google Scholar 

  • Aslan K, Huang J, Wilson GM, Geddes CD (2006) Metal-enhanced fluorescence-based RNA sensing. J Am Chem Soc 128:4206–4207

    Article  Google Scholar 

  • Aslan K, Malyn SN, Bector G, Geddes CD (2007) Microwave-accelerated metal-enhanced fluorescence: an ultra-fast and sensitive DNA sensing platform. Analyst 132:1122–1129

    Article  Google Scholar 

  • Bailey GF, Karp S, Sacks LE (1965) Ultraviolet-absorption spectra of dry bacterial spores. J Bacteriol 89:984–987

    Google Scholar 

  • Bell SEJ, Mackle JN, Sirimuthu NMS (2005) Quantitative surface-enhanced Raman spectroscopy of dipicolinic acid-towards rapid anthrax endospore detection. Analyst 130:545–549

    Article  Google Scholar 

  • Bode E, Hurtle W, Norwood D (2004) Real-time PCR assay for a unique chromosomal sequence of Bacillus anthracis. J Clin Microbiol 42:5825–5831

    Article  Google Scholar 

  • Cable ML, Kirby JP, Sorasaenee K, Gray HB, Ponce A (2007) Bacterial spore detection by (Tb3+ (macrocycle)(dipicolinate) luminescence. J Am Chem Soc 129:1474–1475

    Article  Google Scholar 

  • Cable ML, Kirby JP, Levine DJ, Manary MJ, Gray HB, Ponce A (2009) Detection of bacterial spores with lanthanide-macrocycle binary complexes. J Am Chem Soc 131:9562–9570

    Article  Google Scholar 

  • Chen X, Parker SG, Zou G, Su W, Zhang Q (2010) β-Cyclodextrin-functionalized silver nanoparticles for the naked eye detection of aromatic isomers. ACS Nano 4:5407–5413

    Google Scholar 

  • Chowdhury MH, Ray K, Gray SK, Pond J, Lakowicz JR (2009) Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules. Anal Chem 81:1397–1403

    Article  Google Scholar 

  • Gould GW, Hurst A (1969) The bacterial spore. Academic Press, New York

    Google Scholar 

  • Gu Z, Zhao M, Sheng Y, Bentolila LA, Tang Y (2011) Detection of mercury ion by infrared fluorescent protein and its hydrogel-based paper assay. Anal Chem 83:2324–2329

    Article  Google Scholar 

  • Gültekin A, Ersöz A, Sarıözlü N, Denizli A, Say R (2010) Nanosensors having dipicolinic acid imprinted nanoshell for Bacillus cereus spores detection. J Nanopart Res 12:2069–2079

    Article  Google Scholar 

  • Hindle AA, Hall EAH (1999) Dipicolinic acid (DPA) assay revisited and appraised for spore detection. Analyst 124:1599–1604

    Article  Google Scholar 

  • Kamruzzaman M, Alam A-M, Lee S, Suh Y, Kim Y, Kim G, Kim S (2011) Method for determination of fluoroquinolones based on the plasmonic interaction between their fluorescent terbium complexes and silver nanoparticles. Microchim Acta 174:353–360

    Article  Google Scholar 

  • King D, Luna V, Cannons A, Cattani J, Amuso P (2003) Performance assessment of three commercial assays for direct detection of Bacillus anthracis spores. J Clin Microbiol 41:3454–3455

    Article  Google Scholar 

  • Lee I, Oh W-K, Jang J (2013) Screen-printed fluorescent sensors for rapid and sensitive anthrax biomarker detection. J Hazard Mater 252–253:186–191

    Article  Google Scholar 

  • Li M, Selvin PR (1995) Luminescent polyaminocarboxylate chelates of terbium and europium—the effect of chelate structure. J Am Chem Soc 117:8132–8138

    Article  Google Scholar 

  • Li H, Qiang W, Vuki M, Xu D, Chen H-Y (2011) Fluorescence enhancement of silver nanoparticle hybrid probes and ultrasensitive detection of IgE. Anal Chem 83:8945–8952

    Article  Google Scholar 

  • Li H, Wang M, Wang C, Li W, Qiang W, Xu D (2013) Silver nanoparticle-enhanced fluorescence resonance energy transfer sensor for human platelet-derived growth factor-BB detection. Anal Chem 85:4492–4499

    Article  Google Scholar 

  • Malicka J, Gryczynski I, Kusba J, Lakowicz JR (2003a) Effects of metallic silver island films on resonance energy transfer between N,N′-(dipropyl)-tetramethyl-indocarbocyanine (Cy3)- and N,N′-(dipropyl)-tetramethyl-indodicarbocyanine (Cy5)-labeled DNA. Biopolymers 70:595–603

    Article  Google Scholar 

  • Malicka J, Gryczynski I, Lakowicz JR (2003b) DNA hybridization assays using metal-enhanced fluorescence. Biochem Biophys Res Commun 306:213–218

    Article  Google Scholar 

  • Matveeva E, Gryczynski Z, Malicka J, Gryczynski I, Lakowicz JR (2004) Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces. Anal Biochem 334:303–311

    Article  Google Scholar 

  • Oh W-K, Jeong YS, Song J, Jang J (2011) Fluorescent europium-modified polymer nanoparticles for rapid and sensitive anthrax sensors. Biosens Bioelectron 29:172–177

    Article  Google Scholar 

  • Ornatska M, Sharpe E, Andreescu D, Andreescu S (2011) Paper bioassay based on ceria nanoparticles as colorimetric probes. Anal Chem 83:4273–4280

    Article  Google Scholar 

  • Paulus H (1981) Determination of dipicolinic acid by high-pressure liquid chromatography. Anal Biochem 114:407–410

    Article  Google Scholar 

  • Rosen DL, Sharpless C, McGown LB (1997) Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence. Anal Chem 69:1082–1085

    Article  Google Scholar 

  • Takahashi Y, Kasai H, Nakanishi H, Suzuki TM (2006) Test strips for heavy-metal ions fabricated from nanosized dye compounds. Angew Chem Int Ed 45:913–916

    Article  Google Scholar 

  • Tan H, Chen Y (2012) Silver nanoparticle enhanced fluorescence of europium(III) for detection of tetracycline in milk. Sens Actuators B 173:262–267

    Article  Google Scholar 

  • Tan C, Wang Q, Zhang CC (2011) Optical and electrochemical responses of an anthrax biomarker based on single-walled carbon nanotubes covalently loaded with terbium complexes. Chem Commun 47:12521–12523

    Article  Google Scholar 

  • Taylor KML, Lin W (2009) Hybrid silica nanoparticles for luminescent spore detection. J Mater Chem 19:6418–6422

    Article  Google Scholar 

  • Thompson DG, Enright A, Faulds K, Smith WE, Graham D (2008) Ultrasensitive DNA detection using oligonucleotide—silver nanoparticle conjugates. Anal Chem 80:2805–2810

    Article  Google Scholar 

  • Wang Y, Zhou J, Wang T (2008a) Enhanced luminescence from europium complex owing to surface plasmon resonance of silver nanoparticles. Mater Lett 62:1937–1940

    Article  Google Scholar 

  • Wang Y, Zhou X, Wang T, Zhou J (2008b) Enhanced luminescence from lanthanide complex by silver nanoparticles. Mater Lett 62:3582–3584

    Article  Google Scholar 

  • Wang Y, Xu D, Chen H-Y (2012) Aptamer-based silver nanosensor for multiple protein detection. Lab Chip 12:3184–3189

    Article  Google Scholar 

  • Wu M, Lakowicz JR, Geddes CD (2005) Enhanced lanthanide luminescence using silver nanostructures: opportunities for a new class of probes with exceptional spectral characteristics. J Fluoresc 15:53–59

    Article  Google Scholar 

  • Yang Q, Gong X, Song T, Yang J, Zhu S, Li Y, Cui Y, Li Y, Zhang B, Chang J (2011) Quantum dot-based immunochromatography test strip for rapid, quantitative and sensitive detection of alpha fetoprotein. Biosens Bioelectron 30:145–150

    Article  Google Scholar 

  • Yilmaz MD, Hsu S-H, Reinhoudt DN, Velders AH, Huskens J (2010) Ratiometric fluorescent detection of an anthrax biomarker at molecular printboards. Angew Chem Int Ed 49:5938–5941

    Article  Google Scholar 

  • Yuan J, Gaponik N, Eychmüller A (2012) Application of polymer quantum dot-enzyme hybrids in the biosensor development and test paper fabrication. Anal Chem 84:5047–5052

    Article  Google Scholar 

  • Zhang R, Wang Z, Song C, Yang J, Cui Y (2013) A straightforward immunoassay applicable to a wide range of antibodies based on surface enhanced fluorescence. J Fluoresc 23:551–559

    Article  Google Scholar 

  • Zhao W, Ali MM, Aguirre SD, Brook MA, Li Y (2008) Paper-based bioassays using gold nanoparticle colorimetric probes. Anal Chem 80:8431–8437

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Grant Nos. 21305054 and 21165010), Scientific Research Foundation of Jiangxi Normal University, Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20133604120002), Young Scientist Foundation of Jiangxi Province (20122BCB23011), and Open Project Program of Key Laboratory of Functional Small Organic Molecule, Ministry of Education (No. KLFS-KF-201214; KLFS-KF-201218).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongliang Tan or Li Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, H., Li, Q., Ma, C. et al. Lanthanide-functionalized silver nanoparticles for detection of an anthrax biomarker and test paper fabrication. J Nanopart Res 16, 2151 (2014). https://doi.org/10.1007/s11051-013-2151-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2151-y

Keywords

Navigation