Skip to main content
Log in

Paper-based device for the selective determination of doxycycline antibiotic based on the turn-on fluorescence of bovine serum albumin–coated copper nanoclusters

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An enhanced ratiometric fluorescence sensor was built for on-site visual detection of doxycycline (DOX) through the interaction with bovine serum albumin on the surface of red emissive copper nanoclusters. Upon the addition of weakly fluorescent DOX, the red fluorescence from copper nanoclusters gradually decreased through the inner-filter effect (IFE), while a green fluorescence appears and significantly increases, forming an interesting fluorescent isosbestic point, which was assigned to DOX due to sensitization effect of bovine serum albumin. On the basis of this ratiometric fluorescence, the system possessed good limit of detection (LOD) of 45 nM and excellent selectivity for DOX over other tetracyclines. Based on these findings, a paper-based sensor has been fabricated for distinct visual detection of trace DOX and combined with smartphone color recognizer for quantitative detection of DOX (LOD = 83 nM). This method shows broad application prospects in environmental monitoring and food safety.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang J, Cheng R, Wang Y, Sun L, Chen L, Dai X, Pan J, Pan G, Yan Y (2018) Surface-imprinted fluorescence microspheres as ultrasensitive sensor for rapid and effective detection of tetracycline in real biological samples. Sensors Actuators B Chem 263:533–542. https://doi.org/10.1016/j.snb.2018.02.150

    Article  CAS  Google Scholar 

  2. van Houten CB, Cohen A, Engelhard D, Hays JP, Karlsson R, Moore E, Fernández D, Kreisberg R, Collins LV, de Waal W, de Winter-de Groot KM, Wolfs TFW, Meijers P, Luijk B, Oosterheert JJ, Heijligenberg R, Sankatsing SUC, Bossink AWJ, Stubbs A, Stein M, Reisfeld S, Klein A, Rachmilevitch R, Ashkar J, Braverman I, Kartun V, Chistyakov I, Bamberger E, Srugo I, Odeh M, Schiff E, Dotan Y, Boico O, Navon R, Friedman T, Etshtein L, Paz M, Gottlieb TM, Pri-Or E, Kronenfeld G, Simon E, Oved K, Eden E, Bont LJ (2019) Antibiotic misuse in respiratory tract infections in children and adults–a prospective, multicentre study (TAILORED Treatment). Eur J Clin Microbiol Infect Dis 38(3):505–514. https://doi.org/10.1007/s10096-018-03454-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shalaby AR, Salama NA, Abou-Raya SH, Emam WH, Mehaya FM (2011) Validation of HPLC method for determination of tetracycline residues in chicken meat and liver. Food Chem 124(4):1660–1666. https://doi.org/10.1016/j.foodchem.2010.07.048

    Article  CAS  Google Scholar 

  4. Nebot C, Guarddon M, Seco F, Iglesias A, Miranda JM, Franco CM, Cepeda A (2014) Monitoring the presence of residues of tetracyclines in baby food samples by HPLC-MS/MS. Food Control 46:495–501. https://doi.org/10.1016/j.foodcont.2014.05.042

    Article  CAS  Google Scholar 

  5. Tylova T, Olsovska J, Novak P, Flieger M (2010) High-throughput analysis of tetracycline antibiotics and their epimers in liquid hog manure using ultra performance liquid chromatography with UV detection. Chemosphere 78(4):353–359. https://doi.org/10.1016/j.chemosphere.2009.11.020

    Article  CAS  PubMed  Google Scholar 

  6. Zhou L, Li D-J, Gai L, Wang J-P, Li Y-B (2012) Electrochemical aptasensor for the detection of tetracycline with multi-walled carbon nanotubes amplification. Sensors Actuators B Chem 162(1):201–208. https://doi.org/10.1016/j.snb.2011.12.067

    Article  CAS  Google Scholar 

  7. Ramezani M, Mohammad Danesh N, Lavaee P, Abnous K, Mohammad Taghdisi S (2015) A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosens Bioelectron 70:181–187. https://doi.org/10.1016/j.bios.2015.03.040

    Article  CAS  PubMed  Google Scholar 

  8. Verma R, Gupta BD (2013) Optical fiber sensor for the detection of tetracycline using surface plasmon resonance and molecular imprinting. Analyst 138(23):7254–7263. https://doi.org/10.1039/C3AN01098H

    Article  CAS  PubMed  Google Scholar 

  9. Liu W, Wang X, Wang Y, Li J, Shen D, Kang Q, Chen L (2018) Ratiometric fluorescence sensor based on dithiothreitol modified carbon dots-gold nanoclusters for the sensitive detection of mercury ions in water samples. Sensors Actuators B Chem 262:810–817. https://doi.org/10.1016/j.snb.2018.01.222

    Article  CAS  Google Scholar 

  10. Zhang F, Wang M, Zhang L, Su X (2019) Ratiometric fluorescence system for pH sensing and urea detection based on MoS2 quantum dots and 2, 3-diaminophenazine. Anal Chim Acta 1077:200–207. https://doi.org/10.1016/j.aca.2019.06.001

    Article  CAS  PubMed  Google Scholar 

  11. Tang S, Chen D, Li X, Wang C, Li T, Ma J, Guo G, Guo Q (2022) Promising energy transfer system between fuorine and nitrogen Co-doped graphene quantum dots and Rhodamine B for ratiometric and visual detection of doxycycline in food. Food Chem 388:132936. https://doi.org/10.1016/j.foodchem.2022.132936

    Article  CAS  PubMed  Google Scholar 

  12. Zhuang Y, Lin B, Yu Y, Wang Y, Zhang L, Cao Y, Guo M (2021) A ratiometric fluorescent probe based on sulfur quantum dots and calcium ion for sensitive and visual detection of doxycycline in food. Food Chem 356:129720. https://doi.org/10.1016/j.foodchem.2021.129720

    Article  CAS  PubMed  Google Scholar 

  13. Ding L, Cao Y, Li H, Wang F, Guo D-Y, Yang W, Pan Q (2022) A ratiometric fluorescence-scattering sensor for rapid, sensitive and selective detection of doxycycline in animal foodstuffs. Food Chem 373:131669. https://doi.org/10.1016/j.foodchem.2021.131669

    Article  CAS  PubMed  Google Scholar 

  14. Li W, Zhu J, Xie G, Ren Y, Zheng Y-Q (2018) Ratiometric system based on graphene quantum dots and Eu3+ for selective detection of tetracyclines. Anal Chim Acta 1022:131–137. https://doi.org/10.1016/j.aca.2018.03.018

    Article  CAS  PubMed  Google Scholar 

  15. Yu H, Du L, Guan L, Zhang K, Li Y, Zhu H, Sun M, Wang S (2017) A ratiometric fluorescent probe based on the pi-stacked graphene oxide and cyanine dye for sensitive detection of bisulfite. Sensors Actuators B Chem 247:823–829. https://doi.org/10.1016/j.snb.2017.03.101

    Article  CAS  Google Scholar 

  16. Dong W, Sun C, Sun M, Ge H, Asiri AM, Marwani HM, Ni R, Wang S (2020) Fluorescent copper nanoclusters for the iodide-enhanced detection of hypochlorous acid. ACS Appl Nano Mater 3(1):312–318. https://doi.org/10.1021/acsanm.9b01958

    Article  CAS  Google Scholar 

  17. Tian X, Kong X-J, Zhu Z-M, Chen T-T, Chu X (2015) A new label-free and turn-on strategy for endonuclease detection using a DNA–silver nanocluster probe. Talanta 131:116–120. https://doi.org/10.1016/j.talanta.2014.07.092

    Article  CAS  PubMed  Google Scholar 

  18. Fang X, Zhao Q, Cao H, Liu J, Guan M, Kong J (2015) Rapid detection of Cu2+ by a paper-based microfluidic device coated with bovine serum albumin (BSA)–Au nanoclusters. Analyst 140(22):7823–7826. https://doi.org/10.1039/C5AN01016K

    Article  CAS  PubMed  Google Scholar 

  19. Wang B, Gui R, Jin H, He W, Wang Z (2018) Red-emitting BSA-stabilized copper nanoclusters acted as a sensitive probe for fluorescence sensing and visual imaging detection of rutin. Talanta 178:1006–1010. https://doi.org/10.1016/j.talanta.2017.08.102

    Article  CAS  PubMed  Google Scholar 

  20. Aparna RS, Anjali Devi JS, Anjana RR, Nebu J, George S (2019) Reversible fluorescence modulation of BSA stabilised copper nanoclusters for the selective detection of protamine and heparin. Analyst 144(5):1799–1808. https://doi.org/10.1039/C8AN01703D

    Article  CAS  PubMed  Google Scholar 

  21. Garima JS, Garg S, Matai I, Packirisamy G, Sachdev A (2021) Dual-emission copper nanoclusters–based ratiometric fluorescent probe for intracellular detection of hydroxyl and superoxide anion species. Microchim Acta 188(1):13. https://doi.org/10.1007/s00604-020-04683-z

    Article  CAS  Google Scholar 

  22. Akhuli A, Chakraborty D, Agrawal AK, Sarkar M (2021) Probing the interaction of bovine serum albumin with copper nanoclusters: realization of binding pathway different from protein corona. Langmuir 37(5):1823–1837. https://doi.org/10.1021/acs.langmuir.0c03176

    Article  CAS  PubMed  Google Scholar 

  23. Bhunia S, Kumar S, Purkayastha P (2019) Application of photoinduced electron transfer with copper nanoclusters toward finding characteristics of protein pockets. ACS Omega 4(2):2523–2532. https://doi.org/10.1021/acsomega.8b03213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang H-B, Chen Y, Li Y, Liu Y-M (2016) A sensitive fluorescence sensor for glutathione detection based on MnO2 nanosheets–copper nanoclusters composites. Rsc Adv 6(83):79526–79532. https://doi.org/10.1039/C6RA17850B

    Article  CAS  Google Scholar 

  25. Wang H-B, Chen Y, Li N, Liu Y-M (2017) A fluorescent glucose bioassay based on the hydrogen peroxide-induced decomposition of a quencher system composed of MnO2 nanosheets and copper nanoclusters. Microchim Acta 184(2):515–523. https://doi.org/10.1007/s00604-016-2045-7

    Article  CAS  Google Scholar 

  26. Sun Q, Wang W, Chen Z, Yao Y, Zhang W, Duan L, Qian J (2017) A fluorescence turn-on probe for human (bovine) serum albumin based on the hydrolysis of a dioxaborine group promoted by proteins. Chem Commun 53(48):6432–6435. https://doi.org/10.1039/C7CC03587J

    Article  CAS  Google Scholar 

  27. Ghorai SK, Samanta SK, Mukherjee M, SahaSardar P, Ghosh S (2013) Tuning of “antenna effect” of Eu(III) in ternary systems in aqueous medium through binding with protein. Inorg Chem 52(3):1476–1487. https://doi.org/10.1021/ic302218m

    Article  CAS  PubMed  Google Scholar 

  28. Xu J, Han B (2016) Synthesis of protein-directed orange/red-emitting copper nanoclusters via hydroxylamine hydrochloride reduction approach and their applications on Hg2+ sensing. NANO 11(10):1650108. https://doi.org/10.1142/S1793292016501083

    Article  CAS  Google Scholar 

  29. Chakraborty B, Sengupta C, Pal U, Basu S (2017) Acridone in a biological nanocavity: detailed spectroscopic and docking analyses of probing both the tryptophan residues of bovine serum albumin. New J Chem 41(21):12520–12534. https://doi.org/10.1039/C7NJ02454A

    Article  CAS  Google Scholar 

  30. Wang C, Yao Y, Song Q (2016) Interfacial synthesis of polyethyleneimine-protected copper nanoclusters: size-dependent tunable photoluminescence, pH sensor and bioimaging. Colloids Surf, B 140:373–381. https://doi.org/10.1016/j.colsurfb.2016.01.001

    Article  CAS  Google Scholar 

  31. Said K, Qamhieh N, Awwad F, Ayesh AI (2018) Fabrication and characterization of size-selected Cu nanoclusters using a magnetron sputtering source. Sensors Actuators A 277:112–116. https://doi.org/10.1016/j.sna.2018.03.028

    Article  CAS  Google Scholar 

  32. Zhang Y, Lv M, Gao P, Zhang G, Shi L, Yuan M, Shuang S (2021) The synthesis of high bright silver nanoclusters with aggregation-induced emission for detection of tetracycline. Sensors Actuators B Chem 326:129009. https://doi.org/10.1016/j.snb.2020.129009

    Article  CAS  Google Scholar 

  33. Zhao C, Jiao Y, Gao Z, Yang Y, Li H (2018) N, S co-doped carbon dots for temperature probe and the detection of tetracycline based on the inner filter effect. J Photochem Photobiol, A 367:137–144. https://doi.org/10.1016/j.jphotochem.2018.08.023

    Article  CAS  Google Scholar 

  34. Ding L, Zhao Y, Li H, Zhang Q, Yang W, Fu B, Pan Q (2021) A highly selective ratiometric fluorescent probe for doxycycline based on the sensitization effect of bovine serum albumin. J Hazard Mater 416:125759. https://doi.org/10.1016/j.jhazmat.2021.125759

    Article  CAS  PubMed  Google Scholar 

  35. Zhu H, Huang S, Ding M, Li Z, Li J, Wang S, Leong DT (2022) Sulfur defect-engineered biodegradable cobalt sulfide quantum dot-driven photothermal and chemodynamic anticancer therapy. Acs Appl Mater Int 14(22):25183–25196. https://doi.org/10.1021/acsami.2c05170

    Article  Google Scholar 

  36. Zhu H, Li Z, Ye E, Leong DT (2021) Oxygenic enrichment in hybrid ruthenium sulfide nanoclusters for an optimized photothermal effect. Acs Appl Mater Int 13(50):60351–60361. https://doi.org/10.1021/acsami.1c17608

    Article  CAS  Google Scholar 

  37. Zhong K, Hao C, Liu H, Yang H, Sun R (2021) Synthesis of dual-emissive ratiometric probe of BSA-Au NCs and BSA-Cu NCs and their sensitive and selective detection of copper and mercury ions. J Photochem Photobiol A 408:113100. https://doi.org/10.1016/j.jphotochem.2020.113100

    Article  CAS  Google Scholar 

  38. Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131(3):888–889. https://doi.org/10.1021/ja806804u

    Article  CAS  PubMed  Google Scholar 

  39. Yang J, Li Z, Jia Q (2019) Design of dual-emission fluorescence sensor based on Cu nanoclusters with solvent-dependent effects: visual detection of water via a smartphone. Sensors Actuators B Chem 297:126807. https://doi.org/10.1016/j.snb.2019.126807

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (U21A20290, 82001957) and the Guangdong Basic and Applied Basic Research Foundation (2022A1515011656).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Houjuan Zhu or Suhua Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4550 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, Y., Yin, R., Yu, L. et al. Paper-based device for the selective determination of doxycycline antibiotic based on the turn-on fluorescence of bovine serum albumin–coated copper nanoclusters. Microchim Acta 189, 415 (2022). https://doi.org/10.1007/s00604-022-05509-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05509-w

Keywords

Navigation