Skip to main content
Log in

High yield of graphene by dispersant-free liquid exfoliation of mechanochemically delaminated graphite

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A tremendous work is being done to apply graphene to create novel advanced nanomaterials. The minimized number of few-layer graphene, the absence of different dispersants in the films produced from dispersions of graphene, the concentration of these dispersions are often a key to realizing the goal of achieving high functional performance. Here we show an efficient preparation of graphene by ultrasound disintegration in an organic solvent of the nanostructured graphite obtained by solvent-free mechanochemical delamination in the absence of chemically active compounds. The predominant part of single-sheet graphene nanoparticles in the obtained dispersions is experimentally confirmed. The proposed approach essentially improves the known liquid exfoliation method based on ultrasound disintegration of the bulk graphite, because the proposed preliminary mechanochemical treatment of the initial bulk graphite could provide more than 75 % yield of the single-sheet graphene nanoparticles in the dispersant-free high concentration dispersions (in different organic solvents, including ethanol).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  CAS  Google Scholar 

  • Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photon 4:611–622

    Article  CAS  Google Scholar 

  • Bonaccorso F, Lombardo A, Hasan T et al (2012) Production and processing of graphene and 2d crystals. Mater Today 15:564–589

    Article  CAS  Google Scholar 

  • Bourlinos AB, Georgakilas V, Zboril R et al (2009) Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 5:1841–1845

    Article  CAS  Google Scholar 

  • Brownson DAC, Kampouris DK, Banks CE (2011) An overview of graphene in energy production and storage applications. J Power Sources 196:4873–4885

    Article  CAS  Google Scholar 

  • Cançado LG, Jorio A, Ferreira EHM et al (2011) Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett 11:3190–3196

    Article  Google Scholar 

  • Chang H, Wu H (2013) Graphene-Based Nanomaterials: synthesis, properties, and optical and optoelectronic applications. Adv Funct Mater 23:1984–1997

    Article  CAS  Google Scholar 

  • Choucair M, Thordarson P, Stride JA (2009) Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol 4:30–33

    Article  CAS  Google Scholar 

  • Coleman JN (2009) Liquid-phase exfoliation of nanotubes and graphene. Adv Funct Mater 19:3680–3695

    Article  CAS  Google Scholar 

  • Coleman JN (2013) Liquid exfoliation of defect-free graphene. Acc Chem Res 46:14–22

    Article  CAS  Google Scholar 

  • Eckmann A, Felten A, Mishchenko A et al (2012) Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett 12:3925–3930

    Article  CAS  Google Scholar 

  • Edwards RS, Coleman KS (2013) Graphene synthesis: relationship to applications. Nanoscale 5:38–51

    Article  CAS  Google Scholar 

  • Gokus T, Nair RR, Bonetti A et al (2009) Making graphene luminescent by oxygen plasma treatment. ACS Nano 3:3963–3968

    Article  CAS  Google Scholar 

  • Gómez-Navarro C, Weitz RT, Bittner AM et al (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7:3499–3503

    Article  Google Scholar 

  • Hernandez Y, Nicolosi V, Lotya M et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568

    Article  CAS  Google Scholar 

  • Horcas I, Fernández R, Gómez-Rodríguez JM et al (2007) WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:13705–13712

    Article  CAS  Google Scholar 

  • Kamat PV (2011) Graphene-based nanoassemblies for energy conversion. J Phys Chem Lett 2:242–251

    Article  CAS  Google Scholar 

  • Khan U, O’Neill A, Lotya M et al (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871

    Article  CAS  Google Scholar 

  • Knieke C, Berger A, Voigt M et al (2010) Scalable production of graphene sheets by mechanical delamination. Carbon 48:04–3196

    Article  Google Scholar 

  • León V, Quintana M, Herrero MA et al (2011) Few-layer graphenes from ball-milling of graphite with melamine. Chem Commun 47:10936–10938

    Article  Google Scholar 

  • Li B, Cao H (2011) ZnO@graphene composite with enhanced performance for the removal of dye from water. J Mater Chem 21:3346–3349

    Article  CAS  Google Scholar 

  • Lotya M, King PJ, Khan U et al (2010) High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4:3155–3162

    Article  CAS  Google Scholar 

  • Luo D, Zhang G, Liu J, Sun X (2011) Evaluation criteria for reduced graphene oxide. J Phys Chem C 115:11327–11335

    Article  CAS  Google Scholar 

  • Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87

    Article  CAS  Google Scholar 

  • Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  • Nguyen DD, Tai NH, Chueh YL et al (2011) Synthesis of ethanol-soluble few-layer graphene nanosheets for flexible and transparent conducting composite films. Nanotechnol 22:295606 8pp

    Article  CAS  Google Scholar 

  • Ni Z, Wang Y, Yu T, Shen Z (2008) Raman spectroscopy and imaging of graphene. Nano Res 1:273–291

    Article  CAS  Google Scholar 

  • Novoselov KS, Fal’ko VI, Colombo L et al (2012) A roadmap for graphene. Nature 490:192–200

    Article  CAS  Google Scholar 

  • Pang S, Hernandez Y, Feng X, Müllen K (2011) Graphene as transparent electrode material for organic electronics. Adv Mater 23:2779–2795

    Article  CAS  Google Scholar 

  • Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  CAS  Google Scholar 

  • Posudievsky OYu, Khazieieva OA, Koshechko VG, Pokhodenko VD (2012) Preparation of graphene oxide by solvent-free mechanochemical oxidation of graphite. J Mater Chem 22:12465–12467

    Article  CAS  Google Scholar 

  • Posudievsky OYu, Kozarenko OA, Khazieieva OA et al (2013) Ultrasound-free preparation of graphene oxide from mechanochemically oxidized graphite. J. Mater Chem A 1:6658–6663

    Article  CAS  Google Scholar 

  • Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5:487–496

    Article  CAS  Google Scholar 

  • Singh V, Joung D, Zhai L et al (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271

    Article  CAS  Google Scholar 

  • Subrahmanyam KS, Vivekchand SRC, Govindaraj A, Rao CNR (2008) A study of graphenes prepared by different methods: characterization, properties and solubilization. J Mater Chem 18:1517–1523

    Article  CAS  Google Scholar 

  • Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4:25–29

    Article  CAS  Google Scholar 

  • Yang H, Hernandez Y, Schlierf A et al (2013) A simple method for graphene production based on exfoliation of graphite in water using 1-pyrenesulfonic acid sodium salt. Carbon 53:357–365

    Article  CAS  Google Scholar 

  • Zhamu A, Jang BZ (2012) Mass production of pristine nano graphene materials. US Patent 8,226,801 B2

  • Zhang W, Cui J, Tao C-A et al (2009) A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach. Angew Chem Int Ed 48:1–6

    Article  CAS  Google Scholar 

  • Zhang X, Coleman AC, Katsonis N et al (2010) Dispersion of graphene in ethanol using a simple solvent exchange method. Chem Commun 46:7539–7541

    Article  CAS  Google Scholar 

  • Zhao W, Fang M, Wu F et al (2010) Preparation of graphene by exfoliation of graphite using wet ball milling. J Mater Chem 20:5817–5819

    Article  CAS  Google Scholar 

  • Zhu Y, Murali S, Cai W et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  • Zhu Y, James DK, Tour JM (2012) New routes to graphene, graphene oxide and their related applications. Adv Mater 24:4924–4955

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Targeted Complex Program of the National Academy of Sciences of Ukraine “Fundamental problems of nanostructured systems, nanomaterials and nanotechnologies” and by the Program of the Joint Scientific Projects of the National Academy of Sciences of Ukraine and Russian Foundation for Basic Research. The authors are grateful to Prof. O. Lavrentovich and Dr. Min Gao from Liquid Crystal Institute, Kent State University, for assistance with Cryo-TEM studies and Prof. V.V. Strel’chuk and Dr. A.S. Nikolenko from V.E. Lashkaryov Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine for assistance with Raman microscopy experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Yu. Posudievsky.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8243 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Posudievsky, O.Y., Khazieieva, O.A., Cherepanov, V.V. et al. High yield of graphene by dispersant-free liquid exfoliation of mechanochemically delaminated graphite. J Nanopart Res 15, 2046 (2013). https://doi.org/10.1007/s11051-013-2046-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2046-y

Keywords

Navigation