Skip to main content
Log in

On formation mechanism of Pd–Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH3)4][IrCl6]

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The formation mechanism of Pd–Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH3)4][IrCl6] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 °C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd–Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10–200 nm) and dendrite Ir-rich (10–50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd–Ir nanoparticles, were found to occur.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  • Altavilla C, Ciliberto E (eds) (2010) Inorganic nanoparticles: synthesis, application and perspectives. CRC Press, Boca Raton

    Google Scholar 

  • Asakura H, Teramura K, Shishido T, Tanaka T, Yan N, Xiao C, Yao S, Kou Y (2012) In situ time-resolved DXAFS study of Rh nanoparticles formation mechanism in ethylene glycol at elevated temperature. Phys Chem Chem Phys 14:2983–2990

    Article  CAS  Google Scholar 

  • Bessette RR, Medeiros MG, Patrissi CJ, Deschenes CM, LaFratta CN (2001) Development and characterization of a novel carbon fiber based cathode for semi-fuel cell applications. J Power Sources 96:240–244

    Article  CAS  Google Scholar 

  • Bunker G (2010) Introduction to XAFS: a practical guide to X-ray absorption fine structure spectroscopy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Chen CH, Hwang BJ, Wang GR, Sarma LS, Tang MT, Liu DG, Lee JF (2005) Nucleation and growth mechanism of Pd/Pt bimetallic clusters in sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles as studied by in situ X-ray absorption spectroscopy. J Phys Chem B 109:21566–21575

    Article  CAS  Google Scholar 

  • Chen CH, Sarma LS, Wang GR, Chen JM, Shih SC, Tang MT, Liu DG, Lee JF, Chen GM, Hwang BJ (2006) Formation of bimetallic Ag–Pd nanoclusters via the reaction between Ag nanoclusters and Pd2+ ions. J Phys Chem B 110:10287–10295

    Article  CAS  Google Scholar 

  • Choi E, Oh SJ, Choi M (1991) Charge transfer in Ni x Pt1−x alloys studied by X-ray photoelectron spectroscopy. Phys Rev B 43:6360–6368

    Article  CAS  Google Scholar 

  • Corain B, Schmid G, Toshima N (eds) (2008) Metal nanoclusters in catalysis and materials science: the issue of size control. Elsevier, Boston

    Google Scholar 

  • Ferrando R, Jellinek J, Johnston RL (2008) Alloy-structure-dependent electronic behavior and surface properties of Au–Pd nanoparticles. Chem Rev 108:845–910

    Article  CAS  Google Scholar 

  • Ferrer D, Torres-Castro A, Gao X, Sepùlveda-Guzmàn S, Ortiz-Méndez U, José-Yacamàn M (2007) Three-layer core/shell structure in Au–Pd bimetallic nanoparticles. Nano Lett 7:1701–1705

    Article  CAS  Google Scholar 

  • Gelfond NV, Morozova NB, Igumenov IK, Filatov EYu, Gromilov SA, Shubin YuV, Kwon RI, Danilovich VS (2010) Structure of Ir and Ir-Al2O3 coatings obtained by chemical vapor deposition in the presence of oxygen. Russ J Inorg Chem 51:82–92

    CAS  Google Scholar 

  • Harada M, Asakura K, Toshima N (1993) Catalytic activity and structural analysis of polymer-protected gold/palladium bimetallic clusters prepared by the successive reduction of hydrogen tetrachloroaurate(III) and palladium dichloride. J Phys Chem 97:5103–5114

    Article  CAS  Google Scholar 

  • Heemeier M, Carlsson AF, Naschitzki M, Schmal M, Baumer M, Freund HJ (2002) Preparation and characterization of a model bimetallic catalyst: Co–Pd nanoparticles supported on Al2O3. Angew Chem Int Ed 41:4073–4076

    Article  CAS  Google Scholar 

  • Hwang BJ, Sarma LS, Chen LM, Chen CH, Shin SC, Wang GR, Liu DG, Lee JF, Tang MT (2005) Structural models and atomic distribution of bimetallic nanoparticles as investigated by X-ray absorption spectroscopy. J Am Chem Soc 127:11140–11145

    Article  CAS  Google Scholar 

  • Jeon Y, Qi B, Lu F, Croft M (1989) Transition-metal (Au, Pt, Ir, Re) bonding to Al, Si, Ge: X-ray-absorption studies. Phys Rev B 40:1538–1545

    Article  CAS  Google Scholar 

  • Kan C, Cai W, Li C, Zhang L, Hofmeister H (2003) Ultrasonic synthesis and optical properties of Au/Pd bimetallic nanoparticles in ethylene glycol. J Phys D Appl Phys 36:1609–1614

    Article  CAS  Google Scholar 

  • Kim YG, Garcia-Martinez JC, Crooks RM (2005) Electrochemical properties of monolayer-protected au and pd nanoparticles extracted from within dendrimer templates. Langmuir 21:5485–5491

    Article  CAS  Google Scholar 

  • Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M (2008) Hydrogen absorption in the core/shell interface of Pd/Pt nanoparticles. J Am Chem Soc 130:1818–1819

    Article  CAS  Google Scholar 

  • Korenev SV, Filatov SV, Shubin YuV, Mikheev AN, Gromilov SA, Venediktov AB, Mit’kin VN, Kultyshev RG (1996) Thermal decomposition of [Pd(NH3)4][IrCl6] under different conditions. Russ J Inorg Chem 41:744–748

    Google Scholar 

  • Li J, Wu G, Li L (2012) NO selective reduction by hydrogen over bimetallic Pd–Ir/TiO2 catalyst. Catal Commun 24:38–43

    Article  Google Scholar 

  • Lim B, Jiang M, Camargo PHC, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Pd–Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324:1302–1305

    Article  CAS  Google Scholar 

  • Liu F, Wechsler D, Zhang P (2008) Alloy-structure-dependent electronic behavior and surface properties of Au–Pd nanoparticles. Chem Phys Lett 461:254–259

    Article  CAS  Google Scholar 

  • Liu L, Samjeske G, Nagamatsu S, Sekizawa O, Nagasawa K, Takao S, Imaizumi Y, Yamamoto T, Uruga T, Iwasawa Y (2012) Enhanced oxygen reduction reaction activity and characterization of Pt–Pd/C bimetallic fuel cell catalysts with Pt-enriched surfaces in acid media. J Phys Chem C 116:23453–23464

    Article  CAS  Google Scholar 

  • Long NV, Hie TD, Asaka T, Ohtaki M, Nogami M (2011) Synthesis and characterization of Pt–Pd alloy and core-shell bimetallic nanoparticles for direct methanol fuel cells (DMFCs): enhanced electrocatalytic properties of well-shaped core–shell morphologies and nanostructures. Int J Hydrogen Energy 36:8478–8491

    Article  Google Scholar 

  • Ma J, Zou Y, Jiang Z, Huang W, Li J, Wu G, Huang Y, Xu H (2013) An in situ XAFS study—the formation mechanism of gold nanoparticles from X-ray-irradiated ionic liquid. Phys Chem Chem Phys. doi:10.1039/C3CP51743H

    Google Scholar 

  • Marcelli A, Innocenzi P, Malfatti L, Newton MA, Rau JV, Ritter E, Schade U, Wei Xy (2012) IR and X-ray time-resolved simultaneous experiments: an opportunity to investigate the dynamics of complex systems and non-equilibrium phenomena using third-generation synchrotron radiation sources. J Synchrotron Radiat 19:892–904

    Article  CAS  Google Scholar 

  • Mason MG (1983) Electronic-structure of supported small metal-clusters. Phys Rev B 27:748–762

    Article  CAS  Google Scholar 

  • Miura K, Morihara M, Nomota T, Yagi S, Soda K, Kutluk G, Namatame H, Taniguchi M (2008) In situ XPS study of Pd nanoparticles fabricated by gas evaporation method. Adv Synchrotron Radiat 01:227–233

    Article  Google Scholar 

  • Nedoseykina T, Plyusnin P, Shubin Yu, Korenev S (2010) XAFS investigation of [Pd(NH3)4][AuCl4]2 and its thermolysis products. J Therm Anal Calorim 102:703–708

    Article  CAS  Google Scholar 

  • Nefedov VI (1975) Application of X-ray photoelectron spectroscopy to investigation of coordination compounds. Russ J Coord Chem 1:291–318

    CAS  Google Scholar 

  • Nefedov VI (1977) X-ray photoelectron spectra of halogens in coordination compounds. J Electron Spectrosc Relat Phenom 12:459–476

    Article  CAS  Google Scholar 

  • Nefedov VI (1978) X-ray photoelectron study of ligands in coordination compounds. J Mol Struct 46:251–268

    Article  CAS  Google Scholar 

  • Nefedov VI, Porai-Koshits MA (1972) Donor–acceptor properties of ligands in transition metal coordination compounds by X-ray photoelectron spectroscopy. Mater Res Bull 7:1543–1552

    Article  CAS  Google Scholar 

  • Newville M (2001) IFEFFIT: interactive XAFS analysis and FEFF fitting. J Synchrotron Rad 8:322–324

    Article  CAS  Google Scholar 

  • Nishimura S, Takagaki A, Maenosono S, Ebitani K (2010) In situ time-resolved XAFS study on the formation mechanism of Cu nanoparticles using poly(N-vinyl-2-pyrrolidone) as a capping agent. Langmuir 26:4473–4479

    Article  CAS  Google Scholar 

  • Plyusnin PE, Baidina IA, Shubin YV, Korenev SV (2007) Synthesis, crystal structure, and properties of [Pd(NH 3)4][AuCl4]2. Russ J Inorg Chem 52:371–378

    Article  Google Scholar 

  • Qi B, Perez I, Ansari PH, Lu F, Croft M (1987) L2 and L3 measurements of transition-metal 5d orbital occupancy, spin–orbit effects, and chemical bonding. Phys Rev B 36:2972–2975

    Article  CAS  Google Scholar 

  • Ravel B, Newville M (2005) Athena, artemis, hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Rad 12(4):537–541

    Article  CAS  Google Scholar 

  • Rodrigues JA, Goodman DW (1992) The nature of the metal–metal bond in bimetallic surfaces. Science 257:897–903

    Article  Google Scholar 

  • Ruvinsky PS, Pronkin SN, Zaikovskii VI, Bernardt P, Savinova ER (2008) On the enhanced electrocatalytic activity of Pd overlayers on carbon-supported gold particles in hydrogen electrooxidation. Phys Chem Chem Phys 10:6665–6676

    Article  CAS  Google Scholar 

  • Schmidt TJ, Stamenkovic V, Markovic NM, Ross PN (2003) On the enhanced electrocatalytic activity of Pd overlayers on carbon-supported gold particles in hydrogen electrooxidation. Electrochim Acta 48:3823–3828

    Article  CAS  Google Scholar 

  • Scot RW, Datye AK, Crooks RM (2003) Bimetallic palladium–platinum dendrimer-encapsulated catalysts. J Am Chem Soc 125:3708–3709

    Article  Google Scholar 

  • Shen SY, Zhao TS, Xu JB (2010) Carbon-supported bimetallic Pd–Ir catalysts for ethanol oxidation in alkaline media. Electrochem Acta 55:9179–9184

    Article  CAS  Google Scholar 

  • Sinfelt JH (1983) Bimetallic catalysts. Wiley, New York

    Google Scholar 

  • Skriver HL, Rosengaard NM (1992) Surface energy and work function of elemental metals. Phys Rev B 46:7157–7168

    Article  CAS  Google Scholar 

  • Sun Z (2012) In-situ XAFS study of the growth of gold nanoclusters. In: XAFS15-conference, Beijing, China

  • Teng X, Feygenson M, Wang Qi, He J, Du W, Frenkel AI, Han W, Aronson M (2009) Electronic and magnetic properties of ultrathin Au/Pt nanowires. Nanoletters 9:3177–3184

    Article  CAS  Google Scholar 

  • Toshima N, Yonezawa T (1998) Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem 22:1179–1201

    Article  CAS  Google Scholar 

  • Toshima N, Harada M, Yamazaki Y, Asakurat K (1992) Catalytic activity and structural analysis of polymer-protected gold–palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride. J Phys Chem 96:9927–9933

    Article  CAS  Google Scholar 

  • Vickerman JC, Gilmore I (2009) Surface analysis: the principal techniques, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  • Wang LL, Johnson DD (2009) Predicted trends of core-shell preferences for 132 late transition-metal binary-alloy nanoparticles. J Am Chem Soc 131:14023–14029

    Article  CAS  Google Scholar 

  • Wang W, Huang Q, Liu J, Zou Z, Li Z, Yang H (2008a) One-step synthesis of carbon-supported Pd–Pt alloy electrocatalysts for methanol tolerant oxygen reduction. Electrochem Commun 10:1396–1399

    Article  CAS  Google Scholar 

  • Wang X, Tang Y, Gao Y, Lu T (2008b) Carbon-supported Pd–Ir catalyst as anodic catalyst in direct formic acid fuel cell. J Power Sources 175:784–788

    Article  CAS  Google Scholar 

  • Yao SW, Xiao C, Li W, Kou Y, Dyson PJ, Yan N, Asakura H, Teramura K, Tanaka T (2013) Insights into the formation mechanism of rhodium nanocubes. J Phys Chem C 116:15076–15086

    Article  Google Scholar 

  • Yuan X, Sun G, Asakura H, Tanaka T, Chen X, Yuan Yu, Laurenczy G, Kou Yu, Dyson PJ, Yan N (2013) Development of palladium surface-enriched heteronuclear Au–Pd nanoparticles dehalogenation catalysts in an ionic liquid. Chem Eur J 19:1227–1234

    Article  CAS  Google Scholar 

  • Zadesenets AV, Asanova TI, Vikulova ES, Filatov EYu, Plyusnin PE, Baidina IA, Asanov IP, Korenev SV (2013) Solid solutions of platinum(II) and palladium(II) oxalato-complex salt as precursors of nanoalloys. J Solid State Chem 199:71–77

    Article  CAS  Google Scholar 

  • Zhang GR, Wu J, Xu BQ (2012) Syntheses of sub-30 nm Au@Pd concave nanocubes and Pt-on-(Au@Pd) trimetallic nanostructures as highly efficient catalysts for ethanol oxidation. J Phys Chem C 116:20839–20847

    Article  CAS  Google Scholar 

  • Zheng X, Liu S, Chen X, Cheng J, Ye Q, Pan Z, Marcelli A, Chu W, Wu Z (2013) In-situ observation of Cu–Pt core-shell nanoparticles in the atomic scale by XAFS. J Phys Conf Ser 430:012038

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Russian Foundation for Basic Research, Grant No. 12-02-00354-a, for financial support and A. Shchukarev for XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana I. Asanova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asanova, T.I., Asanov, I.P., Kim, MG. et al. On formation mechanism of Pd–Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH3)4][IrCl6]. J Nanopart Res 15, 1994 (2013). https://doi.org/10.1007/s11051-013-1994-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1994-6

Keywords

Navigation