Skip to main content
Log in

Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Results of an interlaboratory comparison on size characterization of SiO2 airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34—“Properties of Nanoparticle Populations” of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 “Techniques for characterizing size distribution of airborne nanoparticles”. Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2–46.6 nm and 80.2–89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO2 nanoparticles characterization are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AFSSET (2006) Les nanomatériaux, effets sur la santé de l’homme et de l’environnement. Agence française de sécurité sanitaire de l’environnement et du travail

  • Allen MD, Raabe OG (1985) Slip correction measurements of spherical solid aerosol particles in an improved Millikan apparatus. Aerosol Sci Technol 4:269–286

    Article  CAS  Google Scholar 

  • Asbach C, Kaminski H, Fissan H, Monz C, Dahmann D, Mülhopt S, Paur HR, Heinz JK, Herrmann F, Voetz M, Kuhlbusch T (2009) Comparison of four mobility particle sizers with different time resolution for stationary exposure measurements. J Nanopart Res 11:1593–1609

    Article  Google Scholar 

  • Bau S, Ouf FX, Miquel S, Rastoix O, Witschger O (2010) Experimental measurement of the collection efficiency of nanoparticles samplers based on electrostatic and thermophoretic precipitation. International Aerosol Conference, August 29–September 3, 2010, Helsinki, Finlande

  • Buhr E, Senftleben N, Klein T, Bergmann D, Gnieser D, Frase CG, Bosse H (2009) Characterization of nanoparticles by scanning electron microscopy in transmission mode. Meas Sci Technol 20:084025

    Article  Google Scholar 

  • Cadle SH, Mulawa PA (1990) Atmospheric carbonaceous species measurement methods comparison study: general motors results. Aerosol Sci Technol 12:128–141

    Article  Google Scholar 

  • Calzolai G, Chiari M, Lucarelli F, Mazzei F, Nava S, Prati P, Valli G, Vecchi R (2008) PIXE and XRF analysis of particulate matter samples: an inter-laboratory comparison. Nucl Instrum Methods Phys Res B 266:2401–2404

    Article  CAS  Google Scholar 

  • Collins TJ (2007) Image J for microscopy. Biotechniques 43(1 Suppl):25–30

    Article  Google Scholar 

  • Countess RJ (1990) Interlaboratory analyses of carbonaceous aerosol samples. Aerosol Sci Technol 12(1):114–121

    Article  Google Scholar 

  • Cyrs WD, Boysen DA, Casuccio G, Lersch T, Peters TM (2010) Nanoparticle collection efficiency of capillary pore membrane filters. J Aerosol Sci 41:655–664

    Article  CAS  Google Scholar 

  • Dixkens J, Fissan H (1999) Development of an electrostatic precipitator for off-line particle analysis. Aerosol Sci Technol 30:438–453

    Article  CAS  Google Scholar 

  • EC (2009) Preparing for our future: developing a common strategy for key enabling technologies in the EU, COM

  • EC (2011a) Key Enabling Technologies- Final - Report June 2011

  • EC (2011b) Commission recommendation on the definition of nanomaterials. Brussels

  • Ehara K, Mulholland GW, Hagwood RC (2000) Determination of arbitrary moments of aerosol size distribution from measurements with a differential mobility analyzer. Aerosol Sci Technol 32:434–452

    Article  CAS  Google Scholar 

  • Environmental Protection Agency (1987) Federal register. Rules Regul 52(210):41880–41881

    Google Scholar 

  • Fissan H, Hummes D, Stratmann F, Büscher P, Neumann S, Pui DYH, Chen D (1996) Experimental comparison of four differential mobility analyzers for nanometer aerosol measurements. Aerosol Sci Technol 24:1–13

    Article  CAS  Google Scholar 

  • Giechaskiel B, Dilara P, Andersson J (2008) Particle measurement programme (PMP) light-duty inter-laboratory exercise: repeatability and reproducibility of the particle number method. Aerosol Sci Technol 42:528–543

    Article  CAS  Google Scholar 

  • Hering SV, Appel BR, Cheng W, Salaymeh F, Cadle SH, Mulawa PA, Cahill TA, Eldred RA, Surovik M, Fitz D, Howes JE, Knapp KT, Stockburger L, Turpin BJ, Huntzicker JJ, Zhang X, McMurry PH (1990) Comparison of sampling methods for carbonaceous aerosols in ambient air. Aerosol Sci Technol 12:200–213

    Article  Google Scholar 

  • ISO (1994) Accuracy (trueness and precision) of measurement methods and results—part 2: basic method for the determination of repeatability and reproducibility of a standard measurement method, ISO 5725-2

  • ISO (2007) Workplace atmospheres—ultrafine, nanoparticle and nanostructured aerosols—inhalation exposure characterization and assessment, ISO/TR 27628

  • ISO (2009) Determination of particle size distribution-differential electrical mobility analysis for aerosol particles, ISO 15900

  • ISO (2010) Conformity assessment—general requirements for proficiency testing, ISO 17043

  • ISO (2011) Workplace atmosphere characterization of ultrafine aerosols/nanoaerosols—determining the size distribution and number concentration using differential electrical mobility analyzing systems, ISO 28439

  • ISO (2012) Air quality—sampling conventions for airborne particle deposition in the human respiratory system, ISO/CD 13138

  • Jeong C-H, Evans GJ (2009) Inter-comparison of a fast mobility particle sizer and a scanning mobility particle sizer incorporating an ultrafine water-based condensation particle counter. Aerosol Sci Technol 43:364–373

    Article  CAS  Google Scholar 

  • Lahmani M, Marano F, Houdy P (2010) Les nanosciences. Tome 4: Nanotoxicologie et nanoéthique. Paris, éditions Belin

  • Li C, Liu S, Zhu Y (2010) Determining ultrafine particle collection efficiency in a nanometer aerosol sampler. Aerosol Sci Technol 44:1027–1041

    Article  CAS  Google Scholar 

  • Maynard AD, Kuempel ED (2005) Airborne nanostructured particles and occupational health. J Nanopart Res 7:587–614

    Article  CAS  Google Scholar 

  • Maynard AD, Pui DYH (2007) Nanotechnology and occupational health: new technologies—new challenges. J Nanopart Res 9:1–3

    Article  Google Scholar 

  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker HJ, Warheit D (2006) Safe handling of nanotechnology. Nature 444:267–269

    Article  CAS  Google Scholar 

  • Motzkus C, Macé T, Vaslin-Reimann S (2010) Techniques for characterizing morphology and size of airborne nanoparticles. Congrès Metrology of Airborne Nanoparticles, Standardisation and Applications (MANSA), Abstract Proceeding, 8–9 June 2010, NPL Teddington

  • Motzkus C, Macé T, Vaslin-Reimann S, Soukiassian L, Ducourtieux D, Michielsen N, Gensdarmes F, Sillon P, Ausset P, Maillé M (2011) Travaux prénormatifs sur la caractérisation des nanoparticules dans l’air : Qualification d’un protocole de génération d’un aérosol nanométrique de SiO2, Abstract Proceeding, CFA, January 2011, Paris,

  • Motzkus C, Macé T, Vaslin-Reimann S, Soukiassian L, Ducourtieux D, Michielsen N, Gensdarmes F, Sillon P, Ausset P, Maillé M (2012) Qualification of generation protocol of nanometer aerosol of SiO2. Revue française de métrologie 29:31–37

    Article  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Oberdörster G (2001) Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 74:1–8

    Article  Google Scholar 

  • Oberdörster G, Maynard AD, Donaldson K, Castranova V, Fritzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle Fiber Technol 2:1–35

    Google Scholar 

  • Rasband WS (1997–2009) Image J, US National Institute of Health, Bethesda, Maryland, USA. http://rsb.info.nih.gov/ij/. Accessed 07 Jan 2013

  • Rodrigue J, Dhaniyala S, Ranjan M, Hopke PK (2007) Performance comparison of scanning electrical mobility spectrometers. Aerosol Sci Technol 41:360–368

    Article  CAS  Google Scholar 

  • Schmid H, Laskus L, Abraham HJ, Baltensperger U, Lavanchy V, Bizjak M, Burba P, Cachier H, Crow D, Chow J, Gnauk T, Even A, Brink HM, Giesen KP, Hitzenberger R, Hueglin C, Maenhaut W, Pio C, Carvalho A, Putaud J-P, Toom-Sauntry D, Puxbaum H (2011) Results of the carbon conference international aerosol carbon round robin test stage I. Atmos Environ 35:2111–2121

    Article  Google Scholar 

  • Sebastien P, Billon MA, Janson X, Bonnaud G, Bignon J (1978) Utilisation du microscope électronique à transmission (MET) pour la mesure des contaminations par l'amiante. Arch Mal Prof Med Trav 39:229–248

    Google Scholar 

  • Slowik JG, Cross ES, Han J-H, Davidovits P, Onasch TB, Jayne JT, Williams LR, Canagaratna MR, Worsnop DR, Chakrabarty RK, Moosmüller H, Arnott WP, Schwarz JP, Gao R-U, Fahey DW, Kok GL, Petzold A (2007) An inter-comparison of instruments measuring black carbon content of soot particles. Aerosol Sci Technol 41:295–314

    Article  CAS  Google Scholar 

  • Spurny KR (1994) Sampling analysis, identification and monitoring of fibrous dust and aerosols. Analyst 119:41–51

    Article  CAS  Google Scholar 

  • Tsuji JS, Maynard AD, Howard PC, James JT, Lam CW, Warheit DB, Santamaria AB (2006) Research strategies for safety evaluation of nanomaterials. Part IV: risk assessment of nanoparticles. Toxicol Sci 89:42–50

    Article  CAS  Google Scholar 

  • Wiedensohler A (1988) An approximation of the bipolar charge distribution for particles in the submicron size range. J Aerosol Sci 19:387–389

    Article  CAS  Google Scholar 

  • Wiedensohler A, Aalto P, Covert D, Heintzenberg J, McMurry P (1993) Intercomparison of three methods to determine size distributions of ultrafine aerosols with low number concentrations. J Aerosol Sci 24:551–554

    Article  CAS  Google Scholar 

  • Wiedensohler A, Birmili W, Nowak A, Sonntag A, Weinhold K, Merkel M, Wehner B, Tuch T, Pfeifer S, Fiebig M, Fjäraa AM, Asmi E, Sellegri K, Depuy R, Venzac H, Villani P, Laj P, Aalto P, Ogren JA, Swietlicki E, Roldin P, Williams P, Quincey P, Hüglin C, Fierz-Schmidhauser R, Gysel M, Weingartner E, Riccobono F, Santos S, Grüning C, Faloon K, Beddows D, Harrison RM, Monahan C, Jennings SG, O’Dowd CD, Marinoni A, Horn H-G, Keck L, Jiang J, Scheckman J, McMurry PH, Deng Z, Zhao CS, Moerman M, Henzing B, de Leeuw G (2012) Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos Meas Technol 5:657–685

    Article  CAS  Google Scholar 

  • Witschger O, Fabriès JF (2005) Particules ultra-fines et santé au travail. 1—Caractérisation des effets potentiels sur la santé. INRS, Hygiène et Sécurité au Travail (ND 2227) 199:21–35

  • Witschger O, Le-Bihan O, Reynier M, Durand C, Marchetto A, Zimmermann E, Charpentier D (2012) Préconisations en matière de caractérisation des potentiels d’émission et d’exposition professionnelle aux aérosols lors d’opérations mettant en oeuvre des nanomatériaux. INRS, Hygiène et sécurité au travail (ND 2355) 226:41–55

    CAS  Google Scholar 

  • Zervas E, Dorlhène P, Forti L, Perrin C, Momique JC, Monier R, Ing H, Lopez B (2005) Interlaboratory test of exhaust PM using ELPI. Aerosol Sci Technol 39:333–346

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support by C’Nano for LNE, LISA and IRSN laboratories. ILAQH and QUT laboratories acknowledge the support of the Australian Research Council through the Grants DP1112773 and LP1110056. Work at NMIA was supported by the Australian Government’s National Enabling Technologies Strategy. The authors warmly thank J.-M. Aublant (LNE) and J. Fagan (NIST) for supporting this study as project 3 “Techniques for characterizing size distribution of airborne nanoparticles” in the VAMAS framework. The authors acknowledge valuable contributions by H. J. Catchpoole (NMIA), V. A. Coleman (NMIA), J. Herrmann (NMIA), M. Roy (NMIA), P. Palmas (LNE), H. M. Park (KRISS), and F. Calcagnino (UNIGE). We also thank Sukhvir Singh, Prabhat Kumar Gupta, Shankar Aggarwal, Bibhash Chakraborty of the National Physical Laboratory of India (NPLI), and P. Quincey of the UK’s National Physical Laboratory (NPL) for their implication and technical advices for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Motzkus.

Appendix

Appendix

See Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14.

Table 3 Operating parameters of on-line measurement systems used by each laboratory in the interlaboratory comparison
Table 4 Summary of the involved atomic force microscopes
Table 5 SEM operating parameters used by each laboratory at the interlaboratory comparison
Table 6 TEM operating parameters used by each laboratory during the interlaboratory comparison
Table 7 SMPS measurement results of mean and mode diameters of aerosol OP
Table 8 SMPS measurement results of mean and mode diameters of aerosol DP
Table 9 AFM measurement results for aerosol OP (the same sample on a mica substrate, indicated by “M*”, performed by laboratory SMPS4, was measured by laboratories AFM1, 2, and 4)
Table 10 AFM measurement results of aerosol DP (the same sample on a mica substrate, indicated by “M*”, performed by laboratory SMPS4, was measured by laboratories AFM1 and 2)
Table 11 SEM measurement results for aerosol OP
Table 12 SEM measurement results of aerosol DP
Table 13 Size measurements of silica Aerosol OP by TEM
Table 14 Size measurements of silica Aerosol DP by TEM

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motzkus, C., Macé, T., Gaie-Levrel, F. et al. Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study. J Nanopart Res 15, 1919 (2013). https://doi.org/10.1007/s11051-013-1919-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1919-4

Keywords

Navigation