Skip to main content
Log in

Hybrid organic–inorganic coatings including nanocontainers for corrosion protection of magnesium alloy ZK30

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This study is focused on the fabrication, characterization, and application of corrosion protective coatings to magnesium alloy ZK30. Hybrid organic–inorganic coatings were synthesized using organic-modified silicates together with resins based on bisphenol A diglycidyl ether. Cerium molybdate nanocontainers (ncs) with diameter 100 ± 20 nm were loaded with corrosion inhibitor 2-mercaptobenzothiazole and incorporated into the coatings in order to improve their anticorrosion properties. The coatings were investigated for their anticorrosion and nanomechanical properties. The morphology of the coatings was examined by scanning electron microscopy. The composition was estimated by energy-dispersive X-ray analysis. The mechanical integrity of the coatings was studied through nanoindentation and nanoscratch techniques. Scanning probe microscope imaging of the coatings revealed that the addition of ncs creates surface incongruity; however, the hardness to modulus ratio revealed significant strengthening of the coating with increase of ncs. Studies on their corrosion behavior in 0.5 M sodium chloride solutions at room temperature were made using electrochemical impedance spectroscopy. Artificial defects were formatted on the surface of the films in order for possible self-healing effects to be evaluated. The results showed that the coated magnesium alloys exhibited only capacitive response after exposure to corrosive environment for 16 months. This behavior denotes that the coatings have enhanced barrier properties and act as an insulator. Finally, the scratched coatings revealed a partial recovery due to the increase of charge–transfer resistance as the immersion time elapsed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Barsoukov E, Macdonald JR (2005) Impedance spectroscopy theory, experiment, and applications. Wiley, Hoboken, pp 13–20

    Book  Google Scholar 

  • Bei H, George EP, Hay JL, Pharr GM (2005) Influence of indenter tip geometry on elastic deformation during nanoindentation. Phys Rev Lett 95:045501–045504

    Article  CAS  Google Scholar 

  • Bhushan B (1999) Principles and applications of tribology. Wiley, New York

    Google Scholar 

  • Bhushan B (2002) Introduction to tribology. Wiley, New York

    Google Scholar 

  • Bull SJ (1999) Can scratch testing be used as a model for the abrasive wear of hard coatings? Wear 233–235:412–423

    Article  Google Scholar 

  • Charitidis CA, Logothetidis S (2005) Effects of normal load on nanotribological properties of sputtered carbon nitride films. Diam Relat Mater 14:98–108

    Article  CAS  Google Scholar 

  • Cheng YT, Cheng CM (2000) What is indentation hardness? Surf Coat Technol 133–134:417–424

    Article  Google Scholar 

  • Choi J, Nakao S, Kim J, Ikeyama M, Kato T (2007) Corrosion protection of DLC coatings on magnesium alloy. Diam Relat Mater 16:1361–1364

    Article  CAS  Google Scholar 

  • Cole KS, Cole RH (1942) Dispersion and absorption in dielectrics. II. Direct current characteristics. J Chem Phys 10:98–105

    Article  CAS  Google Scholar 

  • Dasari A, Yu Z-Z, Mai Y-W (2007) Nanoscratching of nylon 66-based ternary nanocomposites. Acta Mater 55:635–646

    Article  CAS  Google Scholar 

  • Dasari A, Yu Z-Z, Mai Y-W (2009) Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites. Mater Sci Eng R 63:31–80

    Article  Google Scholar 

  • Froes FH, Elieser D, Aghion E (1998) The science, technology and application of magnesium. J Miner Met Mater Soc 5:30–34

    Article  Google Scholar 

  • Han YC, Schmitt S, Friedrich K (1999) Nanoscale indentation and scratch of short carbon fiber reinforced PEEK/PTFE composite blend by atomic force microscope lithography. Appl Compos Mater 6:1–18

    Article  CAS  Google Scholar 

  • Hoche H, Scheerer H, Probst D, Broszeit E, Berger C (2003) Plasma anodisation as an environmental harmless method for the corrosion protection of magnesium alloys. Surf Coat Technol 174:1002–1007

    Article  Google Scholar 

  • Hodzic A, Stachurski ZH, Kim JK (2000) Nano-indentation of polymer–glass interfaces. Part I. Experimental and mechanical analysis. Polymer 41:6895–6905

    Article  CAS  Google Scholar 

  • Hsu CH, Mansfeld F (2001) Technical Note: concerning the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion 57:747–748

    Article  CAS  Google Scholar 

  • Kartsonakis IA, Ioannis Daniilidis I, Kordas G (2008) Encapsulation of the corrosion inhibitor 8-hydroxyquinoline into Ceria Nanocontainers. J Sol-Gel Sci Technol 48:24–31

    Article  CAS  Google Scholar 

  • Kartsonakis IA, Balaskas AC, Koumoulos EP, Charitidis CA, Kordas G (2012) Evaluation of corrosion resistance of magnesium alloy ZK10 coated with hybrid organic–inorganic film including containers. Corros Sci 65:481–493

    Article  CAS  Google Scholar 

  • Kim JK, Hodzic A (2003) Nanoscale characterisation of thickness and properties of interphase in polymer matrix composites. J Adhesion 79:383–414

    Article  CAS  Google Scholar 

  • Kim JK, Sham ML, Wu JS (2001) Nanoscale characterisation of interphase in silane treated glass fibre composites. Composites A 32:607–618

    Article  Google Scholar 

  • King RB (1987) Elastic analysis of some punch problems for a layered medium. Int J Solids Struct 23:1657–1664

    Article  Google Scholar 

  • Koumoulos EP, Charitidis CA, Daniolos NM, Pantelis DI (2011) Nanomechanical properties of friction stir welded AA6082-T6 aluminum alloy. Mater Sci Eng B 176:1585–1589

    Article  CAS  Google Scholar 

  • Koumoulos EP, Charitidis CA, Papageorgiou DP, Papathanasiou AG, Boudouvis AG (2012) Nanomechanical and nanotribological properties of hydrophobic fluorocarbon dielectric coating on tetraethoxysilane for electrowetting applications. Surf Coat Technol 206:3823–3831

    Article  CAS  Google Scholar 

  • Lamaka SV, Knornschild G, Snihirova DV, Taryba MG, Zheludkevich ML, Ferreira MGS (2009) Complex anticorrosion coating for ZK30 magnesium alloy. Electrochim Acta 55:131–141

    Article  CAS  Google Scholar 

  • Leyland A, Matthews A (2004) Design criteria for wear-resistant nanostructured and glassy-metal coatings. Surf Coat Technol 177–178:317–324

    Article  Google Scholar 

  • Li X, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique its applications. J Mater Charact 48:11–36

    Article  CAS  Google Scholar 

  • Liang J, Srinivasan PB, Blawert C, Dietzel W (2009) Comparison of electrochemical corrosion behavior of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation. Corros Sci 51:2483–2492

    Article  CAS  Google Scholar 

  • Loose WS (1976) Magnesium and magnesium alloys. In: Uhlig HH (ed) Corrosion handbook, 1st edn. The Electrochemical Society, Wiley, New York, pp 218–251

    Google Scholar 

  • Ma Y, Hu H, Northwood D, Nie X (2007) Optimization of the electrolytic plasma oxidation processes for corrosion protection of magnesium alloy AM50 using the Taguchi method. J Mater Process Technol 182:58–64

    Article  CAS  Google Scholar 

  • Makar GL, Kruger J (1993) Corrosion of magnesium. Int Mater Rev 38:138–153

    Article  CAS  Google Scholar 

  • Montemor MF, Pinto R, Ferreira MGS (2009) Chemical composition and corrosion protection of silane films modified with CeO2 nanoparticles. Electrochim Acta 54:5179–5189

    Article  CAS  Google Scholar 

  • Ni H, Li XD, Gao HS, Nguyen TP (2005) Nanoscale structural and. mechanical characterization of bamboo-like polymer/silicon nanocomposite films. Nanotechnology 16:1746–1753

    Article  CAS  Google Scholar 

  • Nie HY, Walzak MJ, McIntyre NS (2006) Scratch resistance anisotropy in biaxially oriented polypropylene and poly(ethylene terephthalate) films. Appl Surf Sci 253:2320–2326

    Article  CAS  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  CAS  Google Scholar 

  • Overney RM (1995) Nanotribological studies on polymers. Trends Polym Sci 3:359–364

    CAS  Google Scholar 

  • Patel MA, Bhanvase BA, Sonawane SH (2013) Production of cerium zinc molybdate nano pigment by innovative ultrasound assisted approach. Ultrason Sonochem 20:906–913

    Article  CAS  Google Scholar 

  • Sanyal B (1981) Organic compounds as corrosion inhibitors in different environments—a review. Prog Org Coat 9:165–236

    Article  CAS  Google Scholar 

  • Scharnagl N, Blawert C, Dietzel W (2009) Corrosion protection of magnesium alloy AZ31 by coating with poly(ether imides) (PEI). Surf Coat Technol 203:1423–1428

    Article  CAS  Google Scholar 

  • Schuh CA (2006) Nanoindentation studies of materials. J Mater Today 9:32–40

    Article  CAS  Google Scholar 

  • Sneddon IN (1948) Boussinesq’s problem for a rigid cone. Math Proc Camb Philos Soc 44:492–507

    Article  Google Scholar 

  • Sonawane SH, Bhanvase BA, Jamali AA, Dubey SK, Kale SS, Pinjari DV, Kulkarni RD, Gogate PR, Pandit AB (2012) Improved active anticorrosion coatings using layer-by-layer assembled ZnO nanocontainers with benzotriazole. Chem Eng J 189–190:464–472

    Article  Google Scholar 

  • Stippich F, Vera E, Wolf GK, Berg G, Friedrich Chr (1998) Enhanced corrosion protection of magnesium oxide coatings on magnesium deposited by ion beam-assisted evaporation. Surf Coat Technol 103–104:29–35

    Article  Google Scholar 

  • Trabelsi W, Triki E, Dhouibi L, Ferreira MGS, Zheludkevich ML, Montemor MF (2006) The use of pre-treatment based on doped silane solutions for improved corrosion resistance of galvanised steel substrates. Surf Coat Technol 200:4240–4250

    Article  CAS  Google Scholar 

  • Troyon M, Huang L (2006) Comparison of different analysis methods in nanoindentation and influence on the correction factor for contact area. Surf Coat Technol 201:1613–1619

    Article  CAS  Google Scholar 

  • Wang H, Akid R, Gobara M (2010) Scratch-resistant anticorrosion sol–gel coating for the protection of AZ31 magnesium alloy via a low temperature sol–gel route. Corros Sci 52:2565–2570

    Article  CAS  Google Scholar 

  • Winston Revie R (2000) Uhlig’s corrosion handbook, 2nd edn. Wiley, New York, pp 799–800

    Google Scholar 

  • Wong JSS, Sue HJ, Zeng KY, Li RKY, Mai Y-W (2004) Scratch damage of polymers in nanoscale. Acta Mater 52:431–443

    Article  CAS  Google Scholar 

  • Yang X, Chen L, Huang B, Bai F, Yang X (2009) Synthesis of pH-sensitive hollow polymer microspheres and their applications drug carriers. Polymer 50:3556–3563

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank Alubin, Israel for providing the samples of Mg ZK30.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Kartsonakis or C. A. Charitidis.

Additional information

Special Issue Editors: Juan Manuel Rojo, Vasileios Koutsos

This article is part of the topical collection on Nanostructured Materials 2012

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kartsonakis, I.A., Koumoulos, E.P., Charitidis, C.A. et al. Hybrid organic–inorganic coatings including nanocontainers for corrosion protection of magnesium alloy ZK30. J Nanopart Res 15, 1871 (2013). https://doi.org/10.1007/s11051-013-1871-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1871-3

Keywords

Navigation