Skip to main content
Log in

Encapsulation of the corrosion inhibitor 8-hydroxyquinoline into ceria nanocontainers

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Ceria nanocontainers were synthesized through a two-step process and then loaded with 8-hydroxyquinoline (8-HQ). The size of the containers was 110 nm as determined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction analysis (XRD) showed that the ceria nanocontainers were of the cerianite crystalline phase. The presence of 8-HQ in the nanocontainers was confirmed with Fourier-transform infrared spectroscopy (FT-IR). The loading of the inhibitor in the nanocontainers was estimated with differential thermal analysis (DTA) and thermogravimetric analysis (TGA). The loading amount of 8-HQ was 4.28% w/w. Based on the size of the nanocontainers and the assumption that they are not broken, we deduced that there were approximately 6.0 × 105 molecules of 8-HQ per container. Furthermore, release of 8-HQ in a corrosive environment was studied by potentiodynamic measurements, showing that the inhibitor is released from the nanocontainers, suppressing the corrosion activities by a strong barrier effect. SEM and dynamic light scattering (DLS) measurements confirmed that the nanocontainers are not significantly agglomerated and maintain their shape after suspension in 0.5 M NaCl solution for more than 72 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang JX, Wen LX, Wang ZH, Chen JF (2006) Mater Chem Phys 96:90

    Article  CAS  Google Scholar 

  2. Zheng M, Cao J, Chang X, Wang J, Liu J, Ma X (2006) Mater Lett 60:2991

    Article  CAS  Google Scholar 

  3. Schlachter A, Gruner ME, Spasova M, Farle M, Entel P (2005) Phase Transit 78:741

    Article  CAS  Google Scholar 

  4. Ding Y, Hu Y, Zhang L, Chen Y, Jiang X (2006) Biomacromolecules 7:1766

    Article  CAS  Google Scholar 

  5. Pappas GS, Liatsi P, Kartsonakis IA, Danilidis I, Kordas G (2008) J Non-Cryst Solids 354:755

    Article  CAS  Google Scholar 

  6. Kartsonakis IA, Liatsi P, Danilidis I, Bouzarelou D, Kordas G (2008) J Phys Chem Solids 69:214

    Article  CAS  Google Scholar 

  7. Lopez T, Sotelo J, Navarrete J, Ascencio JA (2006) Opt Mater 29:88

    Article  CAS  Google Scholar 

  8. Pei AH, Shen ZW, Yang GS (2007) Mater Lett 61:2757

    Article  CAS  Google Scholar 

  9. Giacomelli C, Schmidt V, Borsali R (2007) Macromolecles 40:2148

    Article  CAS  Google Scholar 

  10. Wang H, Zheng X, Chen P, Zheng X (2006) J Mater Chem 16:4701

    Article  CAS  Google Scholar 

  11. Wong MS, Cha JN, Choi KS, Deming TJ, Stucky GD (2002) Nanoletters 2:583

    CAS  Google Scholar 

  12. Duan H, Chen D, Jiang M, Gan W, Li S, Wang M, Gong J (2001) J Am Chem Soc 123:12097

    Article  CAS  Google Scholar 

  13. Hwang YJ, Oh C, Oh SG (2005) J Control Release 106:339

    Article  CAS  Google Scholar 

  14. Zhang Y, Hu Q, Fang Z, Cheng T, Han K, Yang X (2006) Chem Lett 35:944

    Article  CAS  Google Scholar 

  15. Zhan L, Wan M (2003) Adv Funct Mater 13:815

    Article  Google Scholar 

  16. Zhan D, Qi L, Ma J, Cheng H (2002) Adv Mater 14:1499

    Article  Google Scholar 

  17. Ocana M, Hsu WP, Matijevic E (1991) Langmuir 7:2911

    Article  CAS  Google Scholar 

  18. Aiken B, Hsu WP, Matijevic E (1990) J Mater Sci 25:1886

    Article  CAS  Google Scholar 

  19. Kawahashi N, Matijevic E (1990) J Colloid Interf Sci 138:534

    Article  CAS  Google Scholar 

  20. Grag A, Matijevic E (1988) J Colloid Interf Sci 126:243

    Article  Google Scholar 

  21. Tapeinos C, Kartsonakis IA, Liatsi P, Danilidis I, Kordas G (2008) J Am Ceram Soc 91:1052

    Article  CAS  Google Scholar 

  22. Wang M, Jiang M, Ning F, Chen D, Shiyong L, Duan H (2002) Macromolecules 35:5980

    Article  CAS  Google Scholar 

  23. Yang Y, Wan M (2002) J Mater Chem 12:897

    Article  CAS  Google Scholar 

  24. Yang M, Niu Z, Dong X, Xu H, Zhaokai M, Zhaoguo J, Lu Y, Hu Z, Yang Z (2005) Adv Funct Mater 15:1523

    Article  CAS  Google Scholar 

  25. Tartaj P, Teresita GC, Serna CJ (2001) Adv Mater 13:1620

    Article  CAS  Google Scholar 

  26. Wang D, Song C, Lin Y, Hu Z (2006) Mater Lett 60:77

    Article  CAS  Google Scholar 

  27. Arnout I (2001) Langmuir 17:3579

    Article  Google Scholar 

  28. Eiden S, Maret G (2002) J Colloid Interf Sci 250:281

    Article  CAS  Google Scholar 

  29. Song C, Wang D, Gu G, Lin Y, Yang J, Chen L, Fu X, Hu Z (2004) J Colloid Interf Sci 272:340

    Article  CAS  Google Scholar 

  30. Shiho H, Kawahashi N (2000) J Colloid Interf Sci 226:91

    Article  CAS  Google Scholar 

  31. Zhang G, Yu Y, Chen X, Han Y, Di Y, Yang B, Xiao F, Shen J (2003) J Colloid Interf Sci 223:467

    Article  Google Scholar 

  32. Kawahashi N, Matijevic E (1991) J Colloid Interf Sci 143:103

    Article  CAS  Google Scholar 

  33. Chunman H, Yu JC, Kwong T, Mak AC, Lai S (2005) Chem Mater 17:4514

    Article  Google Scholar 

  34. He Y (2005) Powder Technol 155:1

    Article  CAS  Google Scholar 

  35. Crews HR, Chastain Jr D, Ledis SL (1980) United States Patent 4213876

  36. Li SM, Zhang HR, Liu JH (2007) Trans Nonferrous Met Soc China 17:318

    Article  Google Scholar 

  37. Cicileo GP, Rosales BM, Varela FE, Vilche JR (1998) Corros Sci 40:1915

    Article  CAS  Google Scholar 

  38. Crossland AC, Thompson GE, Skeldon P, Wood GC, Smith CJE, Habazaki H, Shimizu K (1998) Corros Sci 40:871

    Article  CAS  Google Scholar 

  39. Kobayashi Y, Fujiwara Y (2006) Electrochem Solid-State Lett 9:B15

    Article  CAS  Google Scholar 

  40. Rivera BF, Johnson BY, O’Keefe MJ, Fahrenholtz WG (2004) Surf Coat Technol 176:349

    Article  CAS  Google Scholar 

  41. Fahrenholtz WG, O’Keefe MJ, Zhou H, Grant JT (2002) Surf Coat Technol 155:208

    Article  CAS  Google Scholar 

  42. Stoffer JO, O’Keefe TJ, Lin X, Morris E, Yu P, Sitaram S (1999) United States Patent 5,932,083

  43. Szunerits S, Walt DR (2002) Anal Chem 74:886

    Article  CAS  Google Scholar 

  44. Kartsonakis IA, Liatsi P, Danilidis I, Kordas G (2007) J Am Ceram Soc 91:372

    Article  Google Scholar 

  45. Galliano PG, Cavalieri AL, Porto-Lopez JM (1995) J Non-Cryst Solids 191:311

    Article  CAS  Google Scholar 

  46. Parvatikar N, Jain S, Bhoraskar SV, Prasad MVNA (2006) J Appl Polym Sci 102:5533

    Article  CAS  Google Scholar 

  47. Bahgat K, Ragheb AG (2007) Central Eur J Chem 5:201

    Article  CAS  Google Scholar 

  48. Takeuchi M, Martra G, Coluccia S, Anpo M (2005) J Phys Chem B 109:7387

    Article  CAS  Google Scholar 

  49. Juiz SA, Leles MIG, Caires ACF, Boralle N, Ionashiro M (1997) J Therm Anal 50:625

    Article  CAS  Google Scholar 

  50. Kelly RG, Scully JR, Shoesmith DW, Buchheit RG (2003) Electrochemical techniques in corrosion science and engineering. Marcel Dekker Inc., pp 60–66

Download references

Acknowledgements

This project was supported by the European Integrated Project “MULTIPROTECT” “Advanced environmentally friendly multifunctional corrosion protection by nanotechnology” (Contract No. NMP3-CT-2005-011783).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Kartsonakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kartsonakis, I., Daniilidis, I. & Kordas, G. Encapsulation of the corrosion inhibitor 8-hydroxyquinoline into ceria nanocontainers. J Sol-Gel Sci Technol 48, 24–31 (2008). https://doi.org/10.1007/s10971-008-1810-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1810-4

Keywords

Navigation