Skip to main content
Log in

Magic number effect on cluster formation of polyhydroxylated fullerenes in water–alcohol binary solution

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Due to the spherical shape with a diameter of ca. 1 nm, the aggregation behaviour of fullerene C60 is very interesting in view of the possible formation of magic number particle in a similar manner as metal cluster in gas phase. Herein, we report for the first time the magic number aggregation behaviours of polyhydroxylated fullerenol C60(OH)36 in water–alcohol (methanol, ethanol and 1-propanol) binary solution with increasing alcohol component. The diameters of particle were ca. 6–8 nm depending on the alcohol used. The particle sizes were precisely measured by the novel-induced grating method which is superior for the particle-size measurement in single-nano region (1–10 nm). The magic number cluster was also detected by scanning probe microscopy observation. However, such aggregation behaviours were not found in DMSO–alcohol system or for the use of less hydroxylated C60(OH)10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anagnostatos GS (1987) Magic numbers in small clusters of rare-gas and alkali atoms. Phys Lett A 124:85–89

    Article  CAS  Google Scholar 

  • Bhuiyan MMH, Ferdaush J, Uddin MH (2007) Density and viscosities of binary mixtures of dimethylsulfoxide + aliphatic lower alkanols (C1–C3) at temperatures from T = 303.15 K to T = 323.15 K. J Chem Thermodyn 39:675–683

    Article  CAS  Google Scholar 

  • Boyen H-G, Kästle G, Weigl F, Koslowski B, Dietrich C, Ziemann P, Spats JP, Riethmüller S, Hartmann C, Möller M, Schmid G, Garnier MG, Oelhafen P (2002) Oxidation-resistant gold-55 clusters. Science 297:1533–1536

    Article  CAS  Google Scholar 

  • Brant J, Lecoanet H, Wiesner MR (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7:545–553

    Article  CAS  Google Scholar 

  • Branz W, Malinowski N, Enders A, Martin TP (2002) Structural transition on (C60)n clusters. Phys Rev B 66:094107

    Article  Google Scholar 

  • Chae S-R, Hotze EM, Wiesner MR (2009) Evaluation of the oxidation of organic compounds by aqueous suspensions of photosensitized hydroxylated-C60 fullerene aggregates. Environ Sci Technol 43:6208–6213

    Article  CAS  Google Scholar 

  • Deguchi S, Mukai S, Tsudome M, Horikoshi K (2006) Facile generation of fullerene nanoparticles by hand-grinding. Adv Mater 18:729–732

    Article  CAS  Google Scholar 

  • Garvey JF, Herron WJ, Vaidyanathan G (1994) Probing the structure and reactivity of hydrogen-bonded clusters of the type {M}n{H2O}H+, via the observation of magic numbers. Chem Rev 94:1999–2014

    Article  CAS  Google Scholar 

  • González B, Calvar N, Gómez E, Domínguez Á (2007) Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T = (293.15, 298.15, and 303.15) K. J Chem Thermodyn 39:1578–1588

    Article  Google Scholar 

  • Grande MdC, García M, Marschoff CM (2009) Density and viscosity of anhydrous mixtures of dimethylsulfoxide with acetonitrile in the range (298.15 to 318.15) K. J Chem Eng Data 54:652–658

    Article  CAS  Google Scholar 

  • Hansen K, Hohmann H, Müller R, Campbell EEB (1996) Icosahedra of icosahedra: the stability of (C60)13. J Chem Phys 105:6088–6089

    Article  CAS  Google Scholar 

  • Kokubo K, Matsubayashi K, Tategaki H, Takada H, Oshima T (2008) Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACS Nano 2:327–333

    Article  CAS  Google Scholar 

  • Kokubo K, Shirakawa S, Kobayashi N, Aoshima H, Oshima T (2011) Facile and scalable synthesis of a highly hydroxylated water-soluble fullerenol as a single nanoparticle. Nano Res 4:204–215

    Article  CAS  Google Scholar 

  • Kyzyma OA, Korobov MV, Avdeev MV, Garamus VM, Snegir SV, Petrenko VI, Aksenov VL, Bulavin LA (2010) Aggregate development in C60/N-methyl-2-pyrrolidone solution and its mixture with water as revealed by extraction and mass spectroscopy. Chem Phys Lett 493:103–106

    Article  CAS  Google Scholar 

  • Liu Y, Zhang G, Niu L, Gan L, Liang D (2011) Assembly of Janus fullerenol: a novel approach to prepare rich carbon structures. J Mater Chem 21:14864–14868

    Article  CAS  Google Scholar 

  • Martin TP, Näher P, Schaber H, Zimmermann U (1993) Clusters of fullerene molecules. Phys Rev Lett 70:3079–3082

    Article  CAS  Google Scholar 

  • Mikhail SZ, Kimel WR (1963) Densities and viscosities of 1-propanol–water mixtures. J Chem Eng Data 8:323–328

    Article  CAS  Google Scholar 

  • Mohan H, Palit DK, Mittal JP, Chiang LY, Asmus K-D, Guldi DM (1998) Excited states and electron transfer reactions of C60(OH)18 in aqueous solution. J Chem Soc Faraday Trans 94:359–363

    Article  CAS  Google Scholar 

  • Nath S, Pal H, Palit DK, Sapre AV, Mittal JP (1998) Aggregation of fullerene, C60, in benzonitrile. J Phys Chem B 102:10158–10164

    Article  CAS  Google Scholar 

  • Rodríguez-Zavala JG, Barajas-Barraza RE, Padilla-Osuna I, Guirado-López RA (2011) Hydration behaviour of polyhydroxylated fullerenes. J Phys B 44:205104–205117

    Article  Google Scholar 

  • Sakurai M, Watanabe K, Sumiyama K, Suzuki K (1999) Magic numbers in transition metal (Fe, Ti, Zr, Nb, and Ta) clusters observed by time-of flight mass spectrometry. J Chem Phys 111:235–238

    Article  CAS  Google Scholar 

  • Sattler K (1993) C60 and beyond: from magic numbers to new materials. Jpn J Appl Phys 32:1428–1432

    Article  CAS  Google Scholar 

  • Semenov KN, Charykov NA, Keskinov VN (2011) Fullerenol synthesis and identification. Properties of the fullerenol water solution. J Chem Eng Data 56:230–239

    Article  CAS  Google Scholar 

  • Wada Y, Totoki S, Watanabe M, Moriya N, Tsunazawa Y, Shimaoka H (2006) Nanoparticle size analysis with relaxation of induced grating by dielectrophoresis. Opt Express 14:5755–5764

    Article  Google Scholar 

  • Wakisaka A, Komatsu S, Usui Y (2001) Solute–solvent and solvent–solvent interactions evaluated through clusters isolated from solutions: preferential solvation in water–alcohol mixtures. J Mol Liq 90:175–184

    Article  CAS  Google Scholar 

  • Ying Q, Marecek J, Chu B (1994) Slow aggregation of buckminsterfullerene (C60) in benzene solution. Chem Phys Lett 219:214–218

    Article  CAS  Google Scholar 

  • Young LDR, Fink AL, Dill KA (1993) Aggregation of globular proteins. Acc Chem Res 26:614–620

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by JSPS KAKENHI of a Grant-in-Aid for Challenging Exploratory Research No. 23651111 and by Health Labour Sciences Research Grants from MHLW of Japan. The authors thank Shimadzu Corporation for collaborative measurements on IG and SPM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Kokubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, Y., Ueno, H., Kokubo, K. et al. Magic number effect on cluster formation of polyhydroxylated fullerenes in water–alcohol binary solution. J Nanopart Res 15, 1755 (2013). https://doi.org/10.1007/s11051-013-1755-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1755-6

Keywords

Navigation