Skip to main content
Log in

Efficient sensitization of Ln3+-doped NaYF4 nanocrystals with organic ligands

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Ligand-capped lanthanide-doped fluoride nanocrystals have been prepared and fully characterized. Organic ligands can be used to promote efficient sensitization of lanthanide luminescence in the fluoride matrix up to a 330-fold enhancement in intensity, and to provide sizeable quantum yields of luminescence. The variation of luminescence efficiency in the capped nanocrystal series can be straightforwardly correlated to the energy of the measured ligand triplet states. The intense luminescence emission of most of the systems renders them very attractive for optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andreiadis ES, Demadrille R, Imbert D, Pecaut J, Mazzanti M (2009) Remarkable tuning of the coordination and photophysical properties of lanthanide ions in a series of tetrazole-based complexes. Chem Eur J 15(37):9458–9476

    Article  CAS  Google Scholar 

  • Andreiadis ES, Imbert D, Pecaut J, Demadrille R, Mazzanti M (2012) Self-assembly of highly luminescent lanthanide complexes promoted by pyridine-tetrazolate ligands. Dalton Trans 41(4):1268–1277

    Article  CAS  Google Scholar 

  • Bae SW, Tan W, Hong J-I (2012) Fluorescent dye-doped silica nanoparticles: new tools for bioapplications. Chem Commun 48(17):2270–2282

    Article  CAS  Google Scholar 

  • Bednarkiewicz A, Mech A, Karbowiak M, Stręk W (2005) Spectral properties of Eu3+ doped NaGdF4 nanocrystals. J Lumin 114(3–4):247–254

    Article  CAS  Google Scholar 

  • Bender CM, Burlitch JM, Barber D, Pollock C (2000) Synthesis and fluorescence of neodymium-doped barium fluoride nanoparticles. Chem Mater 12(7):1969–1976

    Article  CAS  Google Scholar 

  • Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109(9):4283–4374

    Article  CAS  Google Scholar 

  • Bonacchi S, Genovese D, Juris R, Montalti M, Prodi L, Rampazzo E, Zaccheroni N (2011) Luminescent silica nanoparticles: extending the frontiers of brightness. Angew Chem Int Ed 50(18):4056–4066

    Article  CAS  Google Scholar 

  • Bouzigues C, Gacoin T, Alexandrou A (2011) Biological applications of rare-earth based nanoparticles. ACS Nano 5(11):8488–8505

    Article  CAS  Google Scholar 

  • Boyer J-C, van Veggel FCJM (2010) Absolute quantum yield measurements of colloidal NaYF4:Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2(8):1417–1419

    Article  CAS  Google Scholar 

  • Bozoklu G, Marchal C, Pecaut J, Imbert D, Mazzanti M (2010) Structural and photophysical properties of trianionic nine-coordinated near-IR emitting 8-hydroxyquinoline-based complexes. Dalton Trans 39(38):9112–9122

    Article  CAS  Google Scholar 

  • Bunzli JCG (2010) Lanthanide luminescence for biomedical analyses and imaging. Chem Rev 110(5):2729–2755

    Article  Google Scholar 

  • Bunzli JCG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34(12):1048–1077

    Article  Google Scholar 

  • Carlos LD, Ferreira RAS, Bermudez VD, Julian-Lopez B, Escribano P (2011) Progress on lanthanide-based organic-inorganic hybrid phosphors. Chem Soc Rev 40(2):536–549

    Article  CAS  Google Scholar 

  • Charbonniere LJ, Mameri S, Flot D, Waltz F, Zandanel C, Ziessel RF (2007) A disymmetric terpyridine based ligand for the formation of luminescent di-aquo lanthanide complexes. Dalton Trans 22:2245–2253

    Article  Google Scholar 

  • Charbonniere LJ, Rehspringer J-L, Ziessel R, Zimmermann Y (2008) Highly luminescent water-soluble lanthanide nanoparticles through surface coating sensitization. New J Chem 32(6):1055–1059

    Article  CAS  Google Scholar 

  • Comby S, Bünzli GJ-C (2007) Handbook on the Physics and Chemistry of Rare Earths, vol 37. Handbook on the Physics and Chemistry of Rare Earths. elsevier, Amsterdam

    Google Scholar 

  • Comby S, Imbert D, Vandevyver C, Bunzli JCG (2007) A novel strategy for the design of 8-hydroxyquinolinate-based lanthanide bioprobes that emit in the near infrared range. Chem Eur J 13(3):936–944

    Article  CAS  Google Scholar 

  • Cross AM, May PS, van Veggel FCJM, Berry MT (2010) Dipicolinate sensitization of europium luminescence in dispersible 5%Eu:LaF3 nanoparticles. J Phys Chem C 114(35):14740–14747

    Article  CAS  Google Scholar 

  • de Bettencourt-Dias A (2007) Lanthanide-based emitting materials in light-emitting diodes. Dalton Trans 22:2229–2241

    Article  Google Scholar 

  • deMello JC, Wittmann HF, Friend RH (1997) An improved experimental determination of external photoluminescence quantum efficiency. Adv Mater 9(3):230–232

    Article  CAS  Google Scholar 

  • Eliseeva SV, Bunzli JCG (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39(1):189–227

    Article  CAS  Google Scholar 

  • Gao L, Ge X, Chai Z, Xu G, Wang X, Wang C (2009) Shape-controlled synthesis of octahedral α-NaYF4 and its rare earth doped submicrometer particles in acetic acid. Nano Res 2(7):565–574

    Article  CAS  Google Scholar 

  • Geissler D, Charbonniere LJ, Ziessel RF, Butlin NG, Lohmannsroben HG, Hildebrandt N (2010) Quantum dot biosensors for ultrasensitive multiplexed diagnostics. Angew Chem Int Ed 49(8):1396–1401

    Article  CAS  Google Scholar 

  • Ghosh P, Patra A (2008) Tuning of crystal phase and luminescence properties of Eu3+ doped sodium yttrium fluoride nanocrystals. J Phys Chem C 112(9):3223–3231

    Article  CAS  Google Scholar 

  • Giraud M, Andreiadis ES, Fisyuk AS, Demadrille R, Pecaut J, Imbert D, Mazzanti M (2008) Efficient sensitization of lanthanide luminescence by tetrazole-based polydentate ligands. Inorg Chem 47(10):3952–3954

    Article  CAS  Google Scholar 

  • Hauser CP, Thielemann DT, Adlung M, Wickleder C, Roesky PW, Weiss CK, Landfester K (2011) Luminescent polymeric dispersions and films based on oligonuclear lanthanide clusters. Macromol Chem Phys 212(3):286–296

    Article  CAS  Google Scholar 

  • Hemmilä I, Laitala V (2005) Progress in lanthanides as luminescent probes. J Fluoresc 15(4):529–542

    Article  Google Scholar 

  • Höppe HA (2009) Recent developments in the field of inorganic phosphors. Angew Chem Int Ed 48(20):3572–3582

    Article  Google Scholar 

  • Janssens S, Williams GVM, Clarke D (2011) Systematic study of sensitized LaF3:Eu3+ nanoparticles. J Appl Phys 109(2):023506–023509

    Article  Google Scholar 

  • Judd BR (1962) Optical absorption intensities of rare-earth ions. Phys Rev 127(3):750–761. doi:10.1103/PhysRev.127.750

    Article  CAS  Google Scholar 

  • Kar A, Patra A (2012) Impacts of core-shell structures on properties of lanthanide-based nanocrystals: crystal phase, lattice strain, downconversion, upconversion and energy transfer. Nanoscale 4(12):3608–3619

    Article  CAS  Google Scholar 

  • Larson DR, Ow H, Vishwasrao HD, Heikal AA, Wiesner U, Webb WW (2008) Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores. Chem Mater 20(8):2677–2684

    Article  CAS  Google Scholar 

  • Li SW, Zhang X, Hou ZY, Cheng ZY, Ma PA, Lin J (2012) Enhanced emission of ultra-small-sized LaF3:RE3+(RE = Eu, Tb) nanoparticles through 1,2,4,5-benzenetetracarboxylic acid sensitization. Nanoscale 4(18):5619–5626

    Article  CAS  Google Scholar 

  • Liu G, Chen X (2007) Spectroscopic properties of lanthanides in nanomaterials. In: Gschneidner KA, Bunzli J-CG, Vitalij KP (eds) Handbook on the physics and chemistry of rare earths, vol 37. Elsevier, Amsterdam, pp 99–169

    Google Scholar 

  • Mader HS, Kele P, Saleh SM, Wolfbeis OS (2010) Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr Opin Chem Biol 14(5):582–596

    Article  CAS  Google Scholar 

  • Nonat A, Gateau C, Fries PH, Mazzanti M (2006) Lanthanide complexes of a picolinate ligand derived from 1,4,7-triazacyclononane with potential application in magnetic resonance imaging and time-resolved luminescence imaging. Chem Eur J 12(27):7133–7150

    Article  CAS  Google Scholar 

  • Ofelt GS (1962) Intensities of crystal spectra or rare-earth ions. J Chem Phys 37(3):511–520

    Article  CAS  Google Scholar 

  • Origin 7.5 (2008) OriginLab Corp, Northampton

  • Parker D (2000) Responsive lanthanides complexes. Coord Chem Rev 205:109–130

    Article  CAS  Google Scholar 

  • Schwarzenbach G (1957) Complexometric Titrations. Chapman & Hall, London

    Google Scholar 

  • Shavaleev NM, Scopelliti R, Gumy F, Bunzli JCG (2009) Surprisingly bright near-infrared luminescence and short radiative lifetimes of ytterbium in hetero-binuclear Yb–Na chelates. Inorg Chem 48(16):7937–7946

    Article  CAS  Google Scholar 

  • Tallant DR, Seager CH, Simpson RL (2002) Energy transfer and relaxation in europium-activated Y2O3 after excitation by ultraviolet photons. J Appl Phys 91(7):4053–4064

    Article  CAS  Google Scholar 

  • Vetrone F, Naccache R, Mahalingam V, Morgan CG, Capobianco JA (2009) The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv Funct Mater 19(18):2924–2929

    Article  CAS  Google Scholar 

  • Wang F, Han Y, Lim CS, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463(7284):1061–1065

    Article  CAS  Google Scholar 

  • Wong HT, Vetrone F, Naccache R, Chan HLW, Hao JH, Capobianco JA (2011) Water dispersible ultra-small multifunctional KGdF4:Tm3+, Yb3+ nanoparticles with near-infrared to near-infrared upconversion. J Mater Chem 21(41):16589–16596

    Article  CAS  Google Scholar 

  • Wu J, Wang GL, Jin DY, Yuan JL, Guan YF, Piper J (2008) Luminescent europium nanoparticles with a wide excitation range from UV to visible light for biolabeling and time-gated luminescence bioimaging. Chem Commun 3:365–367

    Article  Google Scholar 

  • Zhang J, Shade CM, Chengelis DA, Petoud S (2007) A strategy to protect and sensitize near-infrared luminescent Nd3+ and Yb3+: organic tropolonate ligands for the sensitization of Ln3+-doped NaYF4 nanocrystals. J Am Chem Soc 129(48):14834–14835

    Article  CAS  Google Scholar 

  • Zhao J, Lu Z, Yin Y, McRae C, Piper J, Dawes J, Jin D, Goldys EM (2013) Upconversion luminescence with tunable lifetime in NaYF4:Yb, Er nanocrystals: role of nanocrystal size. Nanoscale 5(3):944–952

    Article  CAS  Google Scholar 

Download references

Acknowledgments

N.G. would like to thank the Nanoscience foundation and Chimtronic research program (6.3.8 ConvSpec) and the authors thank the “French Agence National de la Recherche”, grants ANR-10-P2N-001 for financial support. The authors thank Amélie Revaux, Jacques Pécaut and François Saint-Antonin (CEA Grenoble) for the DLS, X-ray and TEM measurements mentioned in this article, and for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Imbert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3187 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauthier, N., Raccurt, O., Imbert, D. et al. Efficient sensitization of Ln3+-doped NaYF4 nanocrystals with organic ligands. J Nanopart Res 15, 1723 (2013). https://doi.org/10.1007/s11051-013-1723-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1723-1

Keywords

Navigation