Skip to main content
Log in

Direct evidence of advantage of using nanosized zeolite Beta for ISFET-based biosensor construction

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Analytical characteristics of urease- and butyrylcholinesterase (BuChE)- based ion sensitive field-effect transistor (ISFET) biosensors were investigated by the incorporation of zeolite Beta nanoparticles with varying Si/Al ratios. The results obtained by the zeolite-modified ISFET transducers suggested that the Si/Al ratio strongly influenced the biosensor performances due to the electrostatic interactions among enzyme, substrate, and zeolite surface as well as the nature of the enzymatic reaction. Using relatively small nanoparticles (62.7 ± 10, 76.2 ± 10, and 77.1 ± 10 nm) rather than larger particles, that are widely used in the literature, allow us to produce more homogenous products which will give more control over the quantity of materials used on the electrode surface and ability to change solely Si/Al ratio without changing other parameters such as particle size, pore volume, and surface area. This should enable the investigation of the individual effect of changing acidic and electronic nature of this material on the biosensor characteristics. According to our results, high biosensor sensitivity is evident on nanosize and submicron size particles, with the former resulting in higher performance. The sensitivity of biosensors modified by zeolite particles is higher than that to the protein for both types of biosensors. Most significantly, our results show that the performance of constructed ISFET-type biosensors strongly depends on Si/Al ratio of employed zeolite Beta nanoparticles as well as the type of enzymatic reaction employed. All fabricated biosensors demonstrated high signal reproducibility and stability for both BuChE and urease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arkhypova VN, Dzyadevych SV, Soldatkin AP, Korpan YI, El’skaya AV, Gravoueille JM, Martelet C, Jaffrezic-Renault N (2004) Application of enzyme field effect transistors for fast detection of total glycoalkaloids content in potatoes. Sens Actuator B 103:416–422

    Article  CAS  Google Scholar 

  • Balasubramanian A, Ponnuraj K (2010) Crystal structure of the first plant urease from jack bean: 83 years of journey from its first crystal to molecular structure. J Mol Biol 400:274–283

    Google Scholar 

  • Bonham AJ, Hsieh K, Ferguson BS, Beilisle AV, Ricci F, Soh HT, Plaxco KW (2012) Quantification of transcription factor binding in cell extracts using an electrochemical, structure-switching biosensor. J Am Chem Soc 134:3346–3348

    Article  CAS  Google Scholar 

  • Chiku H, Matsui M, Murakami S, Kiyozumi Y, Mizukami F, Sakaguchi K (2003) Zeolites as new chromatographic carriers for proteins—easy recovery of proteins adsorbed on zeolites by polyethylene glycol. Anal Biochem 318:80–85

    Article  CAS  Google Scholar 

  • Chouteau C, Dzyadevych S, Durrieu C, Chovelon JM (2005) A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticides detection in water samples. Biosens Bioelectron 21:273–281

    Article  CAS  Google Scholar 

  • Dzyadevych SV, Arkhypova VN, Soldatkin AP, El’skaya AV, Martelet C, Jaffrezic-Renault N (2004) Enzyme biosensor for tomatine detection in tomatoes. Anal Lett 37:1611–1624

    Article  CAS  Google Scholar 

  • Dzyadevych SW, Soldatkin AP, Eliskaya AV, Martelet C, Jaffrezic-Renault N (2006) Enzyme biosensors based on ion-selective field-effect transistors. Anal Chim Acta 568:248–258

    Article  CAS  Google Scholar 

  • Finiels A, Geneste P, Lecomte J, Mariches F, Moreau C, Moreau P (1999) Role of hydrophobic effects in organic reactions catalyzed by zeolites. J Mol Catal 148:165–172

    Article  CAS  Google Scholar 

  • Fornera S, Yazawa K, Walde P (2011) Spectrophotometric quantification of lactose in solution with a peroxidase-based enzymatic cascade reaction system. Anal Bioanal Chem 401:2307–2310

    Article  CAS  Google Scholar 

  • Higgins JB, LaPierre RB, Schlenker JL, Rohrman AC, Wood JD, Kerr GT, Rohrbaugh WJ (1988) The framework topology of zeolite Beta. Zeolites 8:446–452

    Article  CAS  Google Scholar 

  • Huang Y, Shan W, Baohong L, Yun L, Yahong Z, Yue Z, Haojie L, Tang Y, Yang P (2006) Zeolite nanoparticle modified microchip reactor for efficient protein digestion. Lab Chip 6:534–539

    Article  CAS  Google Scholar 

  • Kaminskaia NV, Kostic NM (1997) Kinetics and mechanism of urea hydrolysis catalyzed by palladium(II) complexes. Inorg Chem 36:5917–5926

    Article  CAS  Google Scholar 

  • Kang D, Beilisle AV, Porchetta A, Plaxco KW, Ricci F (2012) Re-engineering electrochemical biosensors to narrow or extend their useful dynamic range. Angew Chem Int Ed 51:6717–6721

    Article  CAS  Google Scholar 

  • Kharitonov AB, Shipway AN, Katz E, Willner I (1999) An Au nanoparticle bisbipyridinium cyclophane-functionalized ion-sensitive field-effect transistor for the sensing of adrenaline. Anal Chem 71:5441–5443

    Article  CAS  Google Scholar 

  • Kirdeciler SK, Soy E, Ozturk S, Kucherenko I, Soldatkin O, Dzyadevych S, Akata B (2011) A novel urea conductometric biosensor based on zeolite immobilized urease. Talanta 85:1435–1441

    Article  CAS  Google Scholar 

  • Korpan YI, Dzyadevich SV, Arkhipova VN, Gonchar MV, Gibson TD, Jaffrezic-Renault N, Martelet C, Soldatkin AP (2000) Enzyme-based electrochemical sensors for formaldehyde detection. Sens Mater 12:79–87

    CAS  Google Scholar 

  • Lecomte J, Finiels A, Geneste P, Moreau C (1999) Attempt to quantify the hydrophobic character of highly dealuminated H-mordenites in hydroxymethylation of furfuryl alcohol with aqueous formaldehyde. J Mol Catal A Chem 140:157–163

    Article  CAS  Google Scholar 

  • Matsui M, Kiyozumi Y, Yamamoto T, Mizushina Y, Mizukami F, Sakaguchi K (2001) Selective adsorption of biopolymers on zeolites. Chem Eur J 7:1555–1560

    Article  CAS  Google Scholar 

  • Mintova S, Valtchev V, Onfroy T, Marichal C, Knozinger H, Bein T (2006) Variation of the Si/Al ratio in nanosized zeolite Beta crystals. Microporous Mesoporous Mater 90:237–245

    Article  CAS  Google Scholar 

  • Namba S, Hosonuma N, Yashima T (1981) Catalytic application of hydrophobic properties of high-silica zeolites. J Catal 72:16–20

    Article  CAS  Google Scholar 

  • Newsam JM, Treacy MJ, Koetsier WT, de Gruyter CB (1988) Structural characterization of zeolite Beta. Proc R Soc Lond A 420:375–405

    Article  CAS  Google Scholar 

  • Nicolet Y, Lockridge O, Masson P, Fontecilla-Camps JC, Nachon F (2003) Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J Biol Chem 278:41141–41147

    Google Scholar 

  • Prokesova P, Mintova S, Cejka J, Bein T (2003) Preparation of nanosized micro/mesoporous composites via simultaneous synthesis of Beta/MCM-48 phases. Microporous Mesoporous Mater 64:165–174

    Article  CAS  Google Scholar 

  • Rolison DR (1990) Zeolite-modified electrodes and electrode-modified zeolites. Chem Rev 90:867–878

    Article  CAS  Google Scholar 

  • Sakaguchi K, Matsui M, Mizukami F (2005) Applications of zeolite inorganic composites in biotechnology: current state and perspectives. Appl Microbiol Biotechnol 67:306–311

    Article  CAS  Google Scholar 

  • Selevsek N, Matondo M, Carbayo MS, Aebersold R, Domon B (2011) Systematic quantification of peptides/proteins in urine using selected reaction monitoring. Proteomics 11:1135–1147

    Article  CAS  Google Scholar 

  • Soldatkin OO, Soy E, Errachid A, Jaffrezic-Renault N, Akata B, Soldatkin AP, Dzyadevych SV (2011) Influence of composition of zeolite/enzyme nanobiocomposites on analytical characteristics of urea biosensor based on ion-selective field-effect transistors. Sens Lett 9:2320–2326

    Article  CAS  Google Scholar 

  • Soy E, Arkhypova V, Soldatkin O, Shelyakina M, Dzyadevych S, Warzywoda J, Sacco A Jr, Akata B (2012) Investigation of characteristics of urea and butyrylcholine chloride biosensors based on ion-selective field-effect transistors modified by the incorporation of heat-treated zeolite Beta crystals. Mater Sci Eng C 32:1835–1842

    Article  CAS  Google Scholar 

  • Vertegel A, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:6800–6807

    Article  CAS  Google Scholar 

  • Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825

    Article  CAS  Google Scholar 

  • Yonli A, Gener I, Mignard S (2009) Influence of post-synthesis treatment on BEA zeolites hydrophobicity assessed under static and dynamic conditions. Microporous Mesoporous Mater 122:135–142

    Article  CAS  Google Scholar 

  • Yonli AH, Gener I, Mignard S (2010) Comparative study of the hydrophobicity of BEA, HZSM-5 and HY zeolites determined by competitive adsorption. Microporous Mesoporous Mater 132:137–142

    Article  Google Scholar 

  • Zhao J, Chen G, Zhu L, Genxi L (2011) Quantum dots-based platform for the fabrication of electrochemical biosensors. Electrochem Commun 13:31–33

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study is partially supported by the European Union (Project PIRSES–2012-318524 NANODEV) and the NATO (Project CBP.NUKR.CLG 984221). The support provided by the METU-Central Laboratory is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esin Soy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soy, E., Galioglu, S., Soldatkin, O.O. et al. Direct evidence of advantage of using nanosized zeolite Beta for ISFET-based biosensor construction. J Nanopart Res 15, 1645 (2013). https://doi.org/10.1007/s11051-013-1645-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1645-y

Keywords

Navigation