Skip to main content
Log in

Control growth of silicon nanocolumns’ epitaxy on silicon nanowires

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The epitaxial growth of Si nanocolumns on Si nanowires was studied using hot-wire chemical vapor deposition. A single-crystalline and surface oxide-free Si nanowire core (core radius ~21 ± 5 nm) induced by indium crystal seed was used as a substance for the vapor phase epitaxial growth. The growth process is initiated by sidewall facets, which then nucleate upon certain thickness to form Si islands and further grow to form nanocolumns. The Si nanocolumns with diameter of 10–20 nm and aspect ratio up to 10 can be epitaxially grown on the surface of nanowires. The results showed that the radial growth rate of the Si nanocolumns remains constant with the increase of deposition time. Meanwhile, the radial growth rates are controllable by manipulating the hydrogen to silane gas flow rate ratio. The optical antireflection properties of the Si nanocolumns’ decorated SiNW arrays are discussed in the text.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adachi MM, Anantram MP, Karim KS (2010) Optical properties of crystalline-amorphous core-shell silicon nanowires. Nano Lett 10(10):4093–4098

    Article  CAS  Google Scholar 

  • Alper JP, Vincent M, Carraro C, Maboudian R (2012) Silicon carbide coated silicon nanowires as robust electrode material for aqueous micro-supercapacitor. Appl Phys Lett 100(16):163901

    Article  Google Scholar 

  • Amanatides E, Mataras D (2011) Growth kinetics of plasma deposited microcrystalline silicon thin films. Surf Coat Technol 205(S2):S178–S181

    Article  CAS  Google Scholar 

  • Bierman MJ, Jin S (2009) Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ Sci 2(10):1050–1059

    Article  CAS  Google Scholar 

  • Burns GP (1988) Low-temperature native oxide removal from silicon using nitrogen trifluoride prior to low-temperature silicon epitaxy. Appl Phys Lett 53(15):1423–1425

    Article  CAS  Google Scholar 

  • Chen XL, Lan YC, Li JY, Cao YG, He M (2001) Radial growth dynamics of nanowires. J Cryst Growth 222(3):586–590

    Article  CAS  Google Scholar 

  • Chong SK, Goh BT, Aspanut Z, Muhamad MR, Dee CF, Rahman SA (2011a) Synthesis of indium-catalyzed Si nanowires by hot-wire chemical vapor deposition. Mater Lett 65(15–16):2452–2454

    Article  CAS  Google Scholar 

  • Chong SK, Goh BT, Aspanut Z, Muhamad MR, Dee CF, Rahman SA (2011b) Radial growth of slanting-columnar nanocrystalline Si on Si nanowires. Chem Phys Lett 515(1–3):68–71

    Article  CAS  Google Scholar 

  • Chong SK, Goh BT, Aspanut Z, Muhamad MR, Dee CF, Rahman SA (2011c) Effect of rf power on the growth of silicon nanowires by hot-wire assisted plasma enhanced chemical vapor deposition (HW-PECVD) technique. Thin Solid Films 519(15):4933–4939

    Article  CAS  Google Scholar 

  • Chong SK, Goh BT, Dee CF, Rahman SA (2012) Study on the role of filament temperature on growth of indium-catalyzed silicon nanowires by the hot-wire chemical vapor deposition technique. Mater Chem Phys 135(2–3):635–643

    Article  CAS  Google Scholar 

  • Hayden O, Agarwal R, Lu W (2008) Semiconductor nanowire devices. Nano Today 3(5–6):12–22

    Article  CAS  Google Scholar 

  • Kale VS, Prabhakar RR, Pramana SS, Rao M, Sow CH, Jinesh KB, Mhaisalkar SG (2012) Enhanced electron field emission properties of high aspect ratio silicon nanowire-zinc oxide core-shell arrays. Phys Chem Chem Phys 14:4614–4619

    Article  CAS  Google Scholar 

  • Kawashima T, Mizutani T, Nakagawa T, Torii H, Saitoh T, Komori K, Fujii M (2008) Control of surface migration of gold particles on Si nanowires. Nano Lett 8(1):362–368

    Article  CAS  Google Scholar 

  • Lauhon LJ, Gudiksen MS, Wang D, Lieber CM (2002) Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420(6911):57–61

    Article  CAS  Google Scholar 

  • Madras P, Dailey E, Drucker J (2010) Spreading of liquid AuSi on vapor-liquid-solid-grown Si nanowires. Nano Lett 10(5):1759–1763

    Article  CAS  Google Scholar 

  • Martin IT, Teplin CW, Doyle JR, Branz HM, Stradins P (2010) Physics and chemistry of hot-wire chemical vapor deposition from silane: measuring and modeling the silicon epitaxy deposition rate. J Appl Phys 107(5):054906

    Article  Google Scholar 

  • Oehler F, Gentile P, Baron T, Ferret P, Hertog MD, Rouviere J (2010) The importance of the radial growth in the faceting of silicon nanowire. Nano Lett 10(7):2335–2341

    Article  CAS  Google Scholar 

  • Pan L, Lew KK, Redwing JM, Dickey EC (2005) Stranski–Krastanow growth of germanium on silicon nanowires. Nano Lett 5(6):1081–1085

    Article  CAS  Google Scholar 

  • Richardson CE, Mason MS, Atwater HA (2006) Hot-wire CVD-grown epitaxial Si films on Si (100) substrates and a model of epitaxial breakdown. Thin Solid Films 501(1–2):332–334

    Article  CAS  Google Scholar 

  • Rurali R (2010) Colloquium: structural, electronic, and transport properties of silicon nanowires. Rev Mod Phys 82(1):427–449

    Article  CAS  Google Scholar 

  • Sadeghian RB, Islam MS (2011) Ultralow-voltage field-ionization discharge on whiskered silicon nanowires for gas-sensing applications. Nat Mater 10(2):135–140

    Article  CAS  Google Scholar 

  • Schmidt V, Senz S, Gosele U (2005) Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett 5(5):931–935

    Article  CAS  Google Scholar 

  • Sriraman S, Agarwal S, Aydil ES, Maroudas D (2002) Mechanism of hydrogen-induced crystallization of amorphous silicon. Nature 418(6893):62–65

    Article  CAS  Google Scholar 

  • Suzuki K, Tashiro H, Aoyama T (1999) Diffusion coefficient of indium in Si substrates and analytical redistribution profile model. Solid-State Electron 43(1):27–31

    Article  CAS  Google Scholar 

  • Thiesen J, Iwaniczko E, Jones KM, Mahan A, Crandall R (1999) Growth of epitaxial silicon at low temperatures using hot-wire chemical vapor deposition. Appl Phys Lett 75(7):992–994

    Article  CAS  Google Scholar 

  • Tian B, Zheng X, Kempa TJ, Fang Y, Yu N, Yu G, Huang J, Lieber CM (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164):885–889

    Article  CAS  Google Scholar 

  • Wagner RS, Ellis WC (1964) Vapor–liquid–solid mechanism of single crystal growth. Appl Phys Lett 4(5):89–94

    Article  CAS  Google Scholar 

  • Wang ZW, Li ZY (2009) Structures and energetics of indium-catalyzed silicon nanowires. Nano Lett 9(4):1467–1471

    Article  CAS  Google Scholar 

  • Wanka HN, Schubert MB (1997) High silicon etch rates by hot filament generated atomic hydrogen. J Phys D Appl Phys 30(8):L28–L31

    Article  CAS  Google Scholar 

  • Woo YS, Kang K, Jo MH, Jeon JM, Kim M (2007) Solid-phase epitaxy of amorphous Si using single-crystalline Si nanowire seed templates. Appl Phys Lett 91(22):223107

    Article  Google Scholar 

  • Xu T, Nys JP, Addad A, Lebedev OI, Urbieta A, Salhi B, Berthe M, Grandider B, Stievenard D (2010) Faceted sidewalls of silicon nanowires: Au-induced structural reconstructions and electronic properties. Phys Rev B 81(11):115403

    Article  Google Scholar 

  • Yu L, O’Donnell B, Maurice JL, Cabarrocas PRi (2010) Core-shell structure and unique faceting of Sn-catalyzed silicon nanowires. Appl Phys Lett 97(2):023107

    Article  Google Scholar 

  • Zhang X, Di Q, Zhu F, Sun G, Zhang H (2011) Wideband anti-reflective micro/nano dual-scale structures: fabrication and optical properties. Micro Nano Lett 6(11):947–950

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the UM/MOHE High Impact Research Grant Allocation of F000006-21001, the Fundamental Research Grant Scheme of KPT1058-2012, and the University Malaya Research Grant (UMRG) of RG205-11AFR. The authors would also like to thanks Mr. M. Idrus Sidik for the HRTEM measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Kong Chong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 18309 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chong, S.K., Dee, C.F., Yahya, N. et al. Control growth of silicon nanocolumns’ epitaxy on silicon nanowires. J Nanopart Res 15, 1571 (2013). https://doi.org/10.1007/s11051-013-1571-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1571-z

Keywords

Navigation