Skip to main content
Log in

Effect of Two-Step Metal Organic Chemical Vapor Deposition Growth on Quality, Diameter and Density of InAs Nanowires on Si (111) Substrate

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

High-density (∼ 80/um2) vertical InAs nanowires (NWs) with small diameters (∼ 28 nm) were grown on bare Si (111) substrates by means of two-step metal organic chemical vapor deposition. There are two critical factors in the growth process: (1) a critical nucleation temperature for a specific In molar fraction (approximately 1.69 × 10−5 atm) is the key factor to reduce the size of the nuclei and hence the diameter of the InAs NWs, and (2) a critical V/III ratio during the 2nd step growth will greatly increase the density of the InAs NWs (from 45 μm−2 to 80 μm−2) and at the same time keep the diameter small. The high-resolution transmission electron microscopy and selected area diffraction patterns of InAs NWs grown on Si exhibit a Wurtzite structure and no stacking faults. The observed longitudinal optic peaks in the Raman spectra were explained in terms of the small surface charge region width due to the small NW diameter and the increase of the free electron concentration, which was consistent with the TCAD program simulation of small diameter (< 40 nm) InAs NWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Hong-Quan, C. Edward Yi, Y. Hung-Wei, T. Hai-Dang, D. Chang-Fu, W. Yuen-Yee, H. Ching-Hsiang, T. Binh-Tinh, and C. Chen-Chen, Appl. Phys. Exp. 5, 055503 (2012).

    Article  Google Scholar 

  2. H.Q. Nguyen, H.W. Yu, Q.H. Luc, Y.Z. Tang, V.T.H. Phan, C.H. Hsu, E.Y. Chang, and Y.C. Tseng, Nanotechnology 25, 485205 (2014).

    Article  Google Scholar 

  3. F. Romanato, E. Napolitani, A. Carnera, A.V. Drigo, L. Lazzarini, G. Salviati, C. Ferrari, A. Bosacchi, and S. Franchi, J. Appl. Phys. 86, 4748 (1999).

    Article  Google Scholar 

  4. H.-W. Yu, T.-M. Wang, H.-Q. Nguyen, Y.-Y. Wong, Y.-Y. Tu, and E.Y. Chang, J. Vaccum Sci. Technol. B 32, 050601 (2014).

    Article  Google Scholar 

  5. D. Pan, M. Fu, X. Yu, X. Wang, L. Zhu, S. Nie, S. Wang, Q. Chen, P. Xiong, S. von Molnár, and J. Zhao, Nano Lett. 14, 1214 (2014).

    Article  Google Scholar 

  6. K.A. Dick, K. Deppert, L. Samuelson, and W. Seifert, J. Cryst. Growth 297, 326 (2006).

    Article  Google Scholar 

  7. X.-Y. Bao, C. Soci, D. Susac, J. Bratvold, D.P.R. Aplin, W. Wei, C.-Y. Chen, S.A. Dayeh, K.L. Kavanagh, and D. Wang, Nano Lett. 8, 3755 (2008).

    Article  Google Scholar 

  8. T. Katsuhiro, K. Yasunori, M. Junichi, H. Shinjiroh, and F. Takashi, Nanotechnology 20, 145302 (2009).

    Article  Google Scholar 

  9. G.E. Cirlin, V.G. Dubrovskii, Y.B. Samsonenko, A.D. Bouravleuv, K. Durose, Y.Y. Proskuryakov, B. Mendes, L. Bowen, M.A. Kaliteevski, R.A. Abram, and D. Zeze, Phys. Rev. 82, 035302 (2010).

    Article  Google Scholar 

  10. D. Forbes, S. Hubbard, R. Raffaelle, and J.S. McNatt, J. Cryst. Growth 312, 1391 (2010).

    Article  Google Scholar 

  11. J.C. Shin, K.H. Kim, K.J. Yu, H. Hu, L. Yin, C.-Z. Ning, J.A. Rogers, J.-M. Zuo, and X. Li, Nano Lett. 11, 4831 (2011).

    Article  Google Scholar 

  12. B. Mandl, J. Stangl, T. Mårtensson, A. Mikkelsen, J. Eriksson, L.S. Karlsson, G. Bauer, L. Samuelson, and W. Seifert, Nano Lett. 6, 1817 (2006).

    Article  Google Scholar 

  13. F. Glas, Phys. Rev. B 74, 121302 (2006).

    Article  Google Scholar 

  14. L.C. Chuang, M. Moewe, C. Chase, N.P. Kobayashi, C. Chang-Hasnain, and S. Crankshaw, Appl. Phys. Lett. 90, 043115 (2007).

    Article  Google Scholar 

  15. D.E. Aspnes and A.A. Studna, Phys. Rev. B 27, 985 (1983).

    Article  Google Scholar 

  16. F. Frost, G. Lippold, A. Schindler, and F. Bigl, J. Appl. Phys. 85, 8378 (1999).

    Article  Google Scholar 

  17. K.K. Tiong, P.M. Amirtharaj, F.H. Pollak, and D.E. Aspnes, Appl. Phys. Lett. 44, 122 (1984).

    Article  Google Scholar 

  18. J.R. Weber, A. Janotti, and C.G. Van de Walle, Appl. Phys. Lett. 97, 192106 (2010).

    Article  Google Scholar 

  19. S. Buchner and E. Burstein, Phys. Rev. Lett. 33, 908 (1974).

    Article  Google Scholar 

  20. K. Tomioka, J. Motohisa, S. Hara, and T. Fukui, Nano Lett. 8, 3475 (2008).

    Article  Google Scholar 

  21. S. Hertenberger, D. Rudolph, J. Becker, M. Bichler, J.J. Finley, G. Abstreiter, and G. Koblmüller, Nanotechnology 23, 235602 (2012).

    Article  Google Scholar 

  22. T. Mårtensson, J.B. Wagner, E. Hilner, A. Mikkelsen, C. Thelander, J. Stangl, B.J. Ohlsson, A. Gustafsson, E. Lundgren, L. Samuelson, and W. Seifert, Adv. Mater. 19, 1801 (2007).

    Article  Google Scholar 

  23. X. Wang, X. Yang, W. Du, H. Ji, S. Luo, and T. Yang, J. Cryst. Growth 395, 55 (2014).

    Article  Google Scholar 

  24. H.W. Shin, S.J. Lee, D.G. Kim, M.-H. Bae, J. Heo, K.J. Choi, W.J. Choi, J.W. Choe, and J.C. Shin, Sci. Rep. 5, 10764 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Yi Chang.

Additional information

Hung Wei Yu and Deepak Anandan have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H.W., Anandan, D., Hsu, C.Y. et al. Effect of Two-Step Metal Organic Chemical Vapor Deposition Growth on Quality, Diameter and Density of InAs Nanowires on Si (111) Substrate. J. Electron. Mater. 47, 1071–1079 (2018). https://doi.org/10.1007/s11664-017-5878-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5878-x

Keywords

Navigation