Skip to main content

Advertisement

Log in

Improvement of the structural, morphology, and optical properties of TiO2 for solar treatment of industrial wastewater

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Hydrothermal preparation of pure anatase TiO2 with hybrid nano and micro-morphologies directly from titania sol under acidic condition in the absence of any additives or templates has rarely been reported. The present work has found that the post-hydrothermal treatment at 200 °C for different times (6, 12, 24, and 36 h) of titania sol under an acidic environment affected strongly on the structural, morphology, and optical properties of TiO2. A single-crystalline anatase phase with high surface area was obtained. The TEM results showed that shape of TiO2 nanoparticles could be manipulated by post-hydrothermal treatment. The increasing of hydrothermal time (pH 2.5) significantly altered the morphology of TiO2 from pure aggregated nanospherical shape (6 h) into branched micro-flowers as a major shape in addition to nanorod, nanocube, and nanosphere shapes (24 h). Shape-controlled TiO2 nanoparticles showed a red shift in UV–Vis light reflectance spectra as compared to TiO2 nanoparticles obtained without any hydrothermal treatment. The photoluminescence measurements confirm that hydrothermal treatment significantly decrease the electron–hole recombination chance in the obtained TiO2. The fluorescent probe method was used for evaluation of the photo-oxidative activity of different TiO2 nanomaterials. The highly active TiO2 nanoparticle (hydrothermally treated for 24 h) was applied for industrial wastewater treatment using solar radiation as a renewable energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersson M, Osterlund L, Ljungstrom S, Palmqvist A (2002) Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. J Phys Chem B 106:10674–10679

    Article  CAS  Google Scholar 

  • Asal S, Saif M, Hafez H, Mozia S, Heciak A, Moszyński D, Abdel-Mottaleb MSA (2011) Photocatalytic generation of useful hydrocarbons and hydrogen from acetic acid in the presence of lanthanide modified TiO2. Int J Hydrogen Energy 36:6529–6537

    Article  CAS  Google Scholar 

  • Bischof BL, Anderson MA (1995) Peptization process in the sol gel preparation of porous anatase (TiO2). Chem Mater 7:1772–1778

    Article  Google Scholar 

  • Burda C, Chen X, Narayanan R, El-Sayed MA (2005) The chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  • Byrappa K, Yoshimura M (2001) Handbook of hydrothermal technology. William Andrew Publishing, New York

    Google Scholar 

  • Carotta MC, Gherardi S, Malagù C, Nagliati M, Vendemiati B, Martinelli G, Sacerdoti M, Lesci IG (2007) Comparison between titania thick films obtained through sol–gel and hydrothermal synthetic processes. Thin Solid Films 515:8339–8344

    Article  CAS  Google Scholar 

  • Chena L-C, Huang C-M, Tsai F-R (2007) Characterization and photocatalytic activity of K+-doped TiO2 photocatalysts. J Mol Catal A Chem 265:133–140

    Article  Google Scholar 

  • Cheng H, Ma J, Zhao Z, Qi L (1995) Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem Mater 7:663–671

    Article  CAS  Google Scholar 

  • D’Elia D, Beauger C, Hochepied J-F, Rigacci A, Berger M-H, Keller N, Keller-Spitzer V, Suzuki Y, Valmalette J-C, Benabdesselam M, Achard P (2011) Impact of three different TiO2 morphologies on hydrogen evolution by methanol assisted water splitting: nanoparticles, nanotubes and aerogels. Inter J Hydrogen Energy 36:14360–14373

    Article  Google Scholar 

  • Eiden-Assmann S, Widoniak J, Maret G (2004) Synthesis and characterization of porous and nonporous monodisperse colloidal TiO2 particles. Chem Mater 16:6–11

    Article  CAS  Google Scholar 

  • Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341

    Article  CAS  Google Scholar 

  • Fuerte A, Hernández-Alonso MD, Maira AJ, Martinez-Arias A, Fernández-Garcia M, Conesa JC, Soria J, Munuera G (2002) Nanosize Ti–W mixed oxides: effect of doping level in the photocatalytic degradation of toluene using sunlight-type excitation. J Catal 212:1–9

    Article  CAS  Google Scholar 

  • Guan H, Zhu L, Zhou H, Tang H (2008) Rapid probing of photocatalytic activity on titania-based self-cleaning materials using 7-hydroxycoumarin fluorescent probe. Analytica chim acta 608:73–78

    Article  CAS  Google Scholar 

  • Hafez H, Saif M, Mcleskey JT Jr, Abdel-Mottaleb MSA, Yahia IS, Story T, Knoff W (2009) Hydrothermal preparation of Gd3+-doped titanate nanotubes: magnetic properties and photovoltaic performance. Int J Photoenergy 2009:1–8. doi:10.1155/2009/240402

    Article  Google Scholar 

  • Hafez H, Saif M, Abdel-Mottaleb MSA (2011) Down-converting lanthanide doped TiO2 photoelectrodes for efficiency enhancement of dye-sensitized solar cells. J Power Sources 196:5792–5796

    Article  CAS  Google Scholar 

  • Han T-Y, Wu C-F, Hsieh C-T (2007) Hydrothermal synthesis and visible light photocatalysis of metal-doped titania nanoparticles. J Vac Sci Technol B 25:430–435

    Article  CAS  Google Scholar 

  • Ishibashi K-i, Fujishima A, Watanabe T, Hashimoto K (2000) Quantum yields of active oxidative species formed on TiO2 photocatalyst. J Photochem Photobiol A Chem 134:139–142

    Article  CAS  Google Scholar 

  • Jaleha B, Shayegani Madada M, Farshchi Tabrizib M, Habibia S, Golbedaghic R, Keymaneshd MR (2011) UV-degradation effect on optical and surface properties of polystyrene-TiO2 nanocomposite film. J Iran Chem Soc 8:S161–S168

    Article  CAS  Google Scholar 

  • Kim EJ, Hahn SH (2001) Microstructural changes of microemulsion-mediated TiO2 particles during calcination. Mater Lett 49:244–249

    Article  CAS  Google Scholar 

  • Kolen’ko YV, Churagulov BR, Kunst M, Mazerolles L, Colbeau-Justin C (2004a) Photocatalytic properties of titania powders prepared by hydrothermal method. Appl Catal B Environ 54:51–58

    Article  Google Scholar 

  • Kolen’ko YV, Maximov VD, Garshev AV, Meskin PE, Oleyni-kov NN, Churagulov BR (2004b) Hydrothermal synthesis of nanocrystalline and mesoporous titania from aqueous complex titanyl oxalate acid solutions. Chem Phys Lett 388:411–415

    Article  Google Scholar 

  • Kolen’ko YV, Kovnir KA, Gavrilov AI, Garshev AV, Frantti J, Lebedev OI, Churagulov BR, Tendeloo GV, Yoshimura M (2006) Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide. J Phys Chem B 110:4030–4038

    Article  Google Scholar 

  • Kumar S, Nigam N, Ghosh T, Dutta PK, Singh SP, Datta PK, An L, Shi TF (2010) Preparation, characterization and optical properties of a novel azo-based chitosan biopolymer. J Mater Chem Phys 120:361–370

    Article  CAS  Google Scholar 

  • Li Z, Hou B, Xu Y, Wu D, Sun Y, Hu W, Deng F (2005) Comparative study of sol–gel-hydrothermal and sol–gel synthesis of titania–silica composite nanoparticles. J Solid State Chem 178:1395–1405

    Article  CAS  Google Scholar 

  • Li S, Li Y, Wang H, Fan W, Zhang Q (2009) Peptization–hydrothermal method as a surfactant-free process toward nanorod-like anatase TiO2 nanocrystals. Eur J Inorg Chem 2009:4078–4084

    Article  Google Scholar 

  • Liao DL, Liao BQ (2007) Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants. J Photochem Photobiol A Chem 187:363–369

    Article  CAS  Google Scholar 

  • Liu Z, Jin Z, Liu X, Fu Y, Liu G (2006) Fabrication of ordered TiO2 porous thin films by sol-dipping PS template method. J Sol-Gel Sci Technol 38:73–78

    Article  CAS  Google Scholar 

  • Lu C-H, Wen M-C (2008) Synthesis of nanosized TiO2 powders via a hydrothermal microemulsion process. J Alloys Compd 448:153–158

    Article  CAS  Google Scholar 

  • Monticone S, Tufeu R, Kanaev AV, Scolan E, Sanchez C (2000) Quantum size effect in TiO2 nanoparticles: does it exist? Appl Surf Sci 162–163:565–570

    Article  Google Scholar 

  • Morgan DL, Triani G, Blackford MG, Raftery NA, Frost RL, Waclawik ER (2011) Alkaline hydrothermal kinetics in titanate nanostructure formation. J Mater Sci 46:548–557

    Article  CAS  Google Scholar 

  • Nagliati M, Carotta MC, Gherardi S, Lesci IG, Martinelli G (2006) TiO2 nanopowders for sensing applications; a comparison between traditional and hydrothermal synthesis way. Adv Sci Technol 45:205–208

    Article  CAS  Google Scholar 

  • Neamtu M, Yediler A, Siminiceanu I, Macoveanu M, Kettrup A (2004) Decolorization of disperse red 354 azo dye in water by several oxidation processes—a comparative study. Dyes Pigments 60:61–68

    Article  CAS  Google Scholar 

  • Ng JD, Lorber B, Witz J, Theobald-Dietrich A, Kern D, Giege R (1996) The crystallization of biological macromolecules from precipitates: evidence for Ostwald ripening. J Cryst Growth 168:50–62

    Article  CAS  Google Scholar 

  • Nian J-N, Teng H (2006) Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor. J Phys Chem B 110:4193–4198

    Article  CAS  Google Scholar 

  • Penn RL (2004) Kinetics of oriented aggregation. J Phys Chem B 108:12707–12712

    Article  CAS  Google Scholar 

  • Piticescu RM, Piticescu RR, Taloi D, Badilita V (2003) Hydrothermal synthesis of ceramic nanomaterials for functional applications. Nanotechnology 14:312–317

    Article  CAS  Google Scholar 

  • Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Recommendations for the characterization of porous solids. Pure Appl Chem 66:1739–1758

    Article  CAS  Google Scholar 

  • Roy S, Ghose J (2000) Synthesis of stable nanocrystalline cubic zirconia. Mater Res Bull 35:1195–1203

    Article  CAS  Google Scholar 

  • Saif M, Abdel-Mottaleb MSA (2007) Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu and Sm: preparation, characterization and potential applications. Inorg Chim Acta 360:2863–2874

    Article  CAS  Google Scholar 

  • Saif M, Mashaly MM, Eid MF, Fouad R (2012) Synthesis, characterization and thermal studies of binary and/or mixed ligand complexes of Cd(II), Cu(II), Ni(II) and Co(III) based on 2-(Hydroxybenzylidene) thiosemicarbazone: DNA binding affinity of binary Cu(II) complex. Spectrochim Acta A 92:347–356

    Article  CAS  Google Scholar 

  • Salvador P, Gutierrez C (1982) The role of surface state in the electroreduction of dissolved and/or photogenerated oxygen on n-TiO2 electrodes. Chem Phys Lett 86:131–134

    Article  CAS  Google Scholar 

  • Seery MK, George R, Floris P, Pillai SC (2007) Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J Photochem Photobiol A Chem 189:258–263

    Article  CAS  Google Scholar 

  • Shankar MV, Anandan S, Venkatachalam N, Arabindoo B, Murugesan V (2004) Novel thin-film reactor for photocatalytic degradation of pesticides in aqueous solutions. J Chem Technol Biotechnol 79:1258–1279

    Article  Google Scholar 

  • Sreethawong T, Suzuki Y, Yoshikawa S (2005) Photocatalytic evolution of hydrogen over mesoporous TiO2 supported NiO photocatalyst prepared by single-step sol–gel process with surfactant template. Int J Hydrogen Energy 30:1053–1062

    Article  CAS  Google Scholar 

  • Tang J, Mei S, Ferreira MF (2000) Hydrothermal synthesis of nano-TiO2 powders: influence of peptisation and peptising agents on the crystalline phases and phase transitions. J Am Ceram Soc 83:1361–1368

    Article  Google Scholar 

  • Tayade RJ, Kulkarni RG, Jasra RV (2006) Photocatalytic degradation of aqueous nitrobenzene by nanocrystalline TiO2. Ind Eng Chem Res 45:922–927

    Article  CAS  Google Scholar 

  • Xiao Q, Si Z, Zhang J, Xiao C, Tan X (2008) Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline. J Hazard Mater 150:62–67

    Article  CAS  Google Scholar 

  • Xu JX, Li LP, Yan YJ, Wang H, Wang XX, Fu XZ, Li GS (2008) Synthesis and photoluminescence of well-dispersible anatase TiO2 nanoparticles. J Colloid Interface Sci 318:29–34

    Article  CAS  Google Scholar 

  • Yang Y, Ma J, Qin Q, Zhai X (2007) Degradation of nitrobenzene by nano-TiO2 catalyzed ozonation. J Mol Catal A Chem 267:41–48

    Article  CAS  Google Scholar 

  • Yu Y, Xu D (2007) Single-crystalline TiO2 nanorods: highly active and easily recycled photocatalysts. Appl Catal B 73:166–171

    Article  CAS  Google Scholar 

  • Yu JC, Yu JG, Ho WK, Jiang ZT, Zhang LZ (2002) Effects of F doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 14:3808–3816

    Article  CAS  Google Scholar 

  • Yu H, Yu J, Cheng B, Zhou M (2006a) Effects of hydrothermal post-treatment on microstructures and morphology of titanate nanoribbons. J Solid State Chem 179:349–354

    Article  CAS  Google Scholar 

  • Yu J, Yu H, Cheng B, Zhao X, Zhang Q (2006b) Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method. J Photochem Photobiol A Chem 182:121–127

    Article  CAS  Google Scholar 

  • Yu J, Wang G, Cheng B, Zhou M (2007) Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Appl Catal B Environ 69:171–180

    Article  CAS  Google Scholar 

  • Zhang QH, Gao L, Guo JK (2000) Effect of hydrolysis conditions on morphology and crystallisation of nanosized TiO2 powder. J Eur Ceram Soc 20:2153–2158

    Article  CAS  Google Scholar 

  • Zhang Y, Lan D, Wang Y, Wang F (2008) Hydrothermal synthesis of 2D ordered macroporous ZnO films. Front Chem China 3:229–234

    Article  Google Scholar 

  • Zhang W, Yang B, Chen J (2012) Effects of calcination temperature on preparation of boron-doped TiO2 by sol-Gel method. Int J Photoenergy Article ID: 528637

  • Zhong Z, Ang T-P, Luo J, Gan H-C, Gedanken A (2005) Synthesis of one-dimensional and porous TiO2 nanostructures by controlled hydrolysis of titanium alkoxide via coupling with an esterification reaction. Chem Mater 17:6814–6818

    Article  CAS  Google Scholar 

  • Zhu H, Gao X, Lan Y, Song D, Xi Y, Zhao J (2004) Hydrogen titanate nanofibers covered with anatase nanocrystals: a delicate structure achieved by the wet chemistry reaction of the titanate nanofibers. J Am Chem Soc 126:8380–8381

    Article  CAS  Google Scholar 

  • Zhu H, Lan Y, Gao X, Ringer S, Zheng Z, Song D, Zhao J (2005) Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. J Am Chem Soc 127:6730–6736

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saif.

Additional information

Special Issue Editors: Mamadou Diallo, Neil Fromer, Myung S. Jhon

This article is part of the Topical Collection on Nanotechnology for Sustainable Development

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary 1: FT-IR spectrum of the TiO2 (24h). (TIFF 1837 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saif, M., Aboul-Fotouh, S.M.K., El-Molla, S.A. et al. Improvement of the structural, morphology, and optical properties of TiO2 for solar treatment of industrial wastewater. J Nanopart Res 14, 1227 (2012). https://doi.org/10.1007/s11051-012-1227-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1227-4

Keywords

Navigation