Skip to main content
Log in

New method to evaluate optical properties of core–shell nanostructures

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A new method is presented to calculate, for metallic core–dielectric shell nanostructures, the local refractive index, resonance condition, maximum spectral shift, plasma wavelength, and the sensitivity of the wavelength maximum to variations in the refractive index of the environment. The equations that describe these properties are directly related to the surface plasmon peak position, refractive index of the shell, and to the surrounding medium. The method is based on the approach that a layered core dispersed in a dielectric environment (core–shell model) can be figured out as an uncoated sphere dispersed in a medium with a local refractive index (local refractive index model). Thus, in the Mie theory, the same spectral position of the surface plasmon resonance peak can be obtained by varying the volume fraction of the shell or by varying the local refractive index. The assumed equivalence between plasmon resonance wavelengths enable us to show that the local refractive index depends geometrically on the shell volume fraction. Hence, simple relationships between optical and geometrical properties of these core–shell nanostructures are obtained. Furthermore, good agreement is observed between the new relationships and experimental data corresponding to gold nanoparticles (radius = 7.5 nm) covered with silica shells (with thicknesses up to 29.19 nm), which insured that the equivalence hypothesis is correct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amendola V, Meneghetti M (2009) Size evaluation of gold nanoparticles by UV-vis spectroscopy. J Phys Chem C 113:4277–4285. doi:10.1021/jp8082425

    Article  CAS  Google Scholar 

  • Blaber MG, Arnold MD, Harris N, Ford MJ, Cortie MB (2007) Plasmon absorption in nanospheres: A comparison of sodium, potassium, aluminium, silver and gold. Phys B 394:184–187. doi:10.1016/jphysb.2006.12.011

    Article  CAS  Google Scholar 

  • Caruso RA, Antonietti M (2001) Sol-gel nanocoating: An approach to the preparation of structured materials. Chem Mater 13:3272–3282. doi:10.1021/cm001257z

    Article  CAS  Google Scholar 

  • Drachev VP, Chettiar UK, Kildishev AV, Yuan H-K, Cai W, Shalaev VM (2008) The Ag dielectric function in plasmonic metamaterials. Opt Express 16:1186–1195. doi:10.1364/OE.16.001186

    Article  CAS  Google Scholar 

  • Etchegoin PG, Le Ru EC, Meyer M (2006) An analytic model for the optical properties of gold. J Chem Phys 124:164705. doi:10.1063/1.2360270

    Article  Google Scholar 

  • Gaikwad AV, Verschuren P, Eiser E, Rothenberg G (2006) A simple method for measuring the size of metal nanoclusters in solution. J Phys Chem B 110:17437–17443. doi:10.1021/jp063644n

    Article  CAS  Google Scholar 

  • Ghosh SK, Nath S, Kundu S, Esumi K, Pal T (2004) Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids. J Phys Chem B 108:13963–13971. doi:10.1021/jp047021q

    Article  CAS  Google Scholar 

  • Haes AJ, Van Duyne RP (2002) A nanoscale optical blosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604. doi:10.1021/ja020393x

    Article  CAS  Google Scholar 

  • Haes AJ, Van Duyne RP (2003) Nanoscale optical biosensors based on localized surface plasmon resonance spectroscopy. Proc SPIE—Int Soc Opt Eng 5221:47–58. doi:10.1117/12.508308

    CAS  Google Scholar 

  • Hodak JH, Henglein A, Hartland GV (2000) Photophysics of nanometer sized metal particles: Electron-phonon coupling and coherent excitation of breathing vibrational modes. J Phys Chem B 104:9954–9965. doi:10.1021/jp002256x

    Article  CAS  Google Scholar 

  • Jain PK, El-Sayed MA (2007) Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells. J Phys Chem C 111:17451–17454. doi:10.1021/jp0773177

    Article  CAS  Google Scholar 

  • Jain PK, El-Sayed MA (2008) Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: Elongated particle pairs and nanospheres trimers. J Phys Chem C 112:4954–4960. doi:10.1021/jp7120356

    Article  CAS  Google Scholar 

  • Johnson PB, Christy RW (1972) Optical-constants of noble-metals. Phys Rev B 6:4370–4379. doi:10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

  • Khlebtsov NG (2004) Optical models for conjugates of gold and silver nanoparticles with biomacromolecules. J Quant Spectrosc Radiat Transf 89:143–153. doi:10.1016/j.jqsrt.2004.05.018

    Article  CAS  Google Scholar 

  • Kim SW, Hui BJ, Bae DS (2008) Anomalous absorption of isolated silver nanoparticulate films in visible region of electromagnetic field. J Nanosci Nanotechnol 8:739–744. doi:10.1166/jnn.2008.D252

    Article  CAS  Google Scholar 

  • Kobayashi Y, Katakami H, Mine E, Nagao D, Konno M, Liz-Marzan LM (2005) Silica coating of silver nanoparticles using a modified Stober method. J Colloid Interface Sci 283:392–396. doi:10.1016/j.jcis.2004.08.184

    Article  CAS  Google Scholar 

  • Kreibig U (1974) Electronic properties of small silver particles: the optical constants and their temperature dependence. J Phys F Met Phys 4:999–1014. doi:10.1088/0305-4608/4/7/007

    Article  CAS  Google Scholar 

  • Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217. doi:10.1021/jp984796o

    Article  CAS  Google Scholar 

  • Liz-Marzan LM, Giersig M, Mulvaney P (1996) Synthesis of nanosized gold–silica core–shell particles. Langmuir 12:4329–4335. doi:10.1021/la9601871

    Article  CAS  Google Scholar 

  • Lu Y, Yin Y, Li ZY, Xia Y (2002) Synthesis and self-assembly of Au@SiO(2) core–shell colloids. Nano Lett 2:785–788. doi:10.1021/nl025598i

    Article  CAS  Google Scholar 

  • Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J Am Chem Soc 123:1471–1482. doi:10.1021/ja003312a

    Article  CAS  Google Scholar 

  • Miller MM, Lazarides AA (2005) Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J Phys Chem B 109:21556–21565. doi:10.1021/jp054227y

    Article  CAS  Google Scholar 

  • Mine E, Yamada A, Kobayashi Y, Konno M, Liz-Marzan LM (2003) Direct coating of gold nanoparticles with silica by a seeded polymerization technique. J Colloid Interface Sci 264:385–390. doi:10.1016/S0021-9797(03)00422-3

    Article  CAS  Google Scholar 

  • Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW Jr, Ward CA (1983) Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl Optics 22:1099–1120. doi:10.1364/AO.22.001099

    Article  CAS  Google Scholar 

  • Palik ED (1991) Handbook of optical constants of solids II. Academic Press, New York

    Google Scholar 

  • Rentería VM, García-Macedo J (2006) Influence of the local dielectric constant on modeling the optical absorption of silver nanoparticles in silica gels. Colloids Surf A 278:1–9. doi:10.1016/j.colsurfa.2005.11.069

    Article  Google Scholar 

  • Rentería-Tapia VM, García-Macedo J (2008) Influence of oxygen on the optical properties of silver nanoparticles. J Nanosci Nanotechnol 8:6545–6550. doi:10.1166/jnn.2008.017

    Google Scholar 

  • Rentería-Tapia VM, Valverde-Aguilar G, García-Macedo JA (2007) Synthesis, optical properties, and modeling of silver core-silver oxide shell nanostructures in silica films. Proc SPIE—Int Soc Opt Eng 6641:W6411–W6411. doi:10.1117/12.730870

    Google Scholar 

  • Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, Ávalos-Borja M, Castillón-Barraza FF, Posada-Amarillas A (2005) Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol. Physica E 27:104–112. doi:10.1016/j.physe.2004.10.014

    Article  CAS  Google Scholar 

  • Sudeep PK, Takechi K, Kamat PV (2007) Harvesting photons in the infrared. Electron injection from excited tricarbocyanine dye (IR-125) into TiO2 and Ag@TiO2 core-shell nanoparticles. J Phys Chem C 111:488–494. doi:10.1021/jp0665022

    Article  CAS  Google Scholar 

  • Templeton AC, Pietron JJ, Murray RW, Mulvaney P (2000) Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters. J Phys Chem B 104:564–570. doi:10.1021/jp991889c

    Article  CAS  Google Scholar 

  • Tom RT, Nair AS, Singh N, Aslam M, Nagendra CL, Philip R, Vijayamohanan K, Pradeep T (2003) Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 core-shell nanoparticles: one-step synthesis, characterization, spectroscopy, and optical limiting properties. Langmuir 19:3439–3445. doi:10.1021/la0266435

    Article  CAS  Google Scholar 

  • Wang P, Wang D, Xie T, Li H, Yang M, Wei X (2008a) Preparation of monodisperse Ag/Anatase TiO(2)core-shell nanoparticles. Mater Chem Phys 109:181–183. doi:10.1016/j.matchemphys.2007.11.019

    Article  CAS  Google Scholar 

  • Wang W, Zhang J, Chen F, He D, Anpo M (2008b) Preparation and photocatalytic properties of Fe(3+)-doped Ag@TiO(2) core-shell nanoparticles. J Colloid Interface Sci 323:182–186. doi:10.1016/j.jcis.2008.03.043

    Article  CAS  Google Scholar 

  • Xu H, Käll M (2002) Modeling the optical response of nanoparticle-based surface plasmon resonance sensors. Sensors and Actuators B 87:244–249. doi:10.1016/S0925-4005(02)00243-5

    Article  Google Scholar 

  • Yong KT, Sahoo Y, Swihart MT, Prasad PN (2006) Synthesis and plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of gold-silver core-shell nanostructures. Colloids Surf A 290:89–105. doi:10.1016/j.colsurfa.2006.05.004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Professor Paul Mulvaney for his helpful comments and suggestions on this work and for giving access to the data reported by Liz-Marzan et al. 1996. The authors acknowledge the financial supports of CONACYT 79781, Red NyN, PAPIIT IN107510, PUNTA, and UCMEXUS. VMRT is also grateful to CONACYT, PROMEP, and PUNTA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Franco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rentería-Tapia, V., Franco, A. & García-Macedo, J. New method to evaluate optical properties of core–shell nanostructures. J Nanopart Res 14, 915 (2012). https://doi.org/10.1007/s11051-012-0915-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0915-4

Keywords

Navigation