Skip to main content
Log in

Evaluation of genotoxic effect of silver nanoparticles (Ag-Nps) in vitro and in vivo

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Silver nanoparticles (Ag-NPs) are the most prominent nanoproducts. Due to their antimicrobial activity, they have been incorporated in different materials, such as catheters, clothes, electric home appliance, and many others. The genotoxicity of Ag-NPs (5–45 nm), in different concentrations and times of exposure, was evaluated by the comet assay in in vitro and in vivo conditions, respectively, using human peripheral blood and Swiss mice. The results showed the genotoxic effect of Ag-NPs in vitro, in all the doses tested in the initial hour of exposure, possibly through the reactive oxygen species generation. Nevertheless, the values for this damage decrease with time, indicating that the DNA may have been restored by the repair system. In the in vivo conditions, we found no genotoxicity of Ag-NPs in any hour of exposure and any dose investigated, which can be attributed to the activation of a cellular antioxidant network and the hydrophobic nature of Ag-NPs. Now, it is absolutely necessary to investigate the role of Ag-NPs in different cell lines in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahamed M, Karns M, Goodson M et al (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233:404–410

    Article  CAS  Google Scholar 

  • Alt V, Bechert T, Steinrucke P et al (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25:4383–4391

    Article  CAS  Google Scholar 

  • Arora S, Jain J, Rajwade JM, Paknikar KM (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179:93–100

    Article  CAS  Google Scholar 

  • AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    Article  CAS  Google Scholar 

  • Barnes C, Elsaesser A, Arkusz J et al (2008) Reproducible comet assay of amorphous silica nanoparticles detects no genotoxicity. Nano Lett 8:3069–3074

    Article  CAS  Google Scholar 

  • Cadet J, Delatour T, Douki T et al (1999) Hydroxyl radicals and DNA base damage. Mutat Res 429:9–21

    Google Scholar 

  • Chavany C, Saison-Behmoaras T, Le DT, Puisieux F, Couvreur P, Helene C (1994) Adsorption of oligonucleotides onto polyisohexylcyanoacrylate nanoparticles protect them against nucleases and increase their cellular uptake. Pharmacol Res 11:1370–1378

    Article  CAS  Google Scholar 

  • Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12

    Article  CAS  Google Scholar 

  • Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261

    Article  CAS  Google Scholar 

  • Collins A, Dusinska M, Franklin M et al (1997) Comet assay in human biomonitoring studies: reliability, validation, and applications. Environ Mol Mutagen 30:139–146

    Article  CAS  Google Scholar 

  • De M, You CC, Srivastava S, Rotello VM (2007) Biomimetic interactions of proteins with functionalized nanoparticles: a thermodynamic study. J Am Chem Soc 129:10747–10753

    Article  CAS  Google Scholar 

  • Foldbjerg R, Dang DA, Autrup H (2010) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 185:743–750

    Google Scholar 

  • Greulich C, Kittler S, Muhr G, Koller M (2009) Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbecks Arch Surg 394(3):495–502

    Article  CAS  Google Scholar 

  • Hackenberg S, Scherzed A, Kessler M et al (2011) Silver nanoparticles: Evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201:27–33

    Article  CAS  Google Scholar 

  • Huo Y, Li G, Duan RF, Gou Q, Fu CL, Hu YC (2008) PTEN deletion leads to deregulation of antioxidants and increased oxidative damage in mose embryonic fibroblasts. Free Radic Biol Med 44:1578–1591

    Article  CAS  Google Scholar 

  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983

    Article  CAS  Google Scholar 

  • Jana NR, Gearheart L, Murphy C (2001) Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun 7:617–618

    Article  Google Scholar 

  • Janes KA, Calvo P, Alonso MJ (2001) Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 47:83–97

    Article  CAS  Google Scholar 

  • Jong WHD, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3:133–149

    Article  Google Scholar 

  • Lundquivist M, Sethson I, Jonsson BH (2004) Protein adsorption onto silica nanoparticles: conformational changes depend on the particles’ curvature and the protein stability. Langmuir 20:10639–10647

    Article  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    CAS  Google Scholar 

  • Murphy CJ, Jana NR (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14:80–82

    Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–883

    Article  Google Scholar 

  • Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv 55:329–347

    Article  CAS  Google Scholar 

  • Paula MMS, Costa CS, Baldin MC et al (2009) In vitro effect of silver nanoparticles on creatine kinase activity. J Braz Chem Soc 20:1556–1557

    Article  CAS  Google Scholar 

  • Sayes CM, Reed KL, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97:163–180

    Article  CAS  Google Scholar 

  • Tice RR, Agurell E, Anderson D et al (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  CAS  Google Scholar 

  • Villela IV, Oliveira IM, Silva J, Henriques JAP (2006) DNA damage and repair in haemolymph cells of golden mussel (Limnoperna fortunei) exposed to environmental contaminants. Mutat Res 605:78–86

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Moraes de Andrade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavares, P., Balbinot, F., de Oliveira, H.M. et al. Evaluation of genotoxic effect of silver nanoparticles (Ag-Nps) in vitro and in vivo. J Nanopart Res 14, 791 (2012). https://doi.org/10.1007/s11051-012-0791-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0791-y

Keywords

Navigation