Skip to main content
Log in

Silver Nanoparticles Toxicity and Bactericidal Effect Against Methicillin-Resistant Staphylococcus aureus: Nanoscale Does Matter

  • Published:
NanoBiotechnology

Abstract

Silver nanoparticles, which are being used increasingly as antimicrobial agents, may extend its antibacterial application to methicillin-resistant Staphylococcus aureus (MRSA), the main cause of nosocomial infections worldwide. To explore the antibacterial properties of silver nanoparticles against MRSA, the present work includes an analysis of the relation between nanosilver effect and MRSA’s resistance mechanisms, a study of the size dependence of the bactericidal activity of nanosilver and a toxicity assessment of nanoparticles against epithelial human cells. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and MBC/MIC ratio of silver nanoparticles were quantified by using a luciferase-based assay. The cytotoxic effect (CC50 and CC90) of three different nanosilver sizes (10, 30–40, and 100 nm) were assessed in HeLa cells by a similar method. The therapeutic index was used as an indicator of nanosilver overall efficacy and safety. Silver nanoparticles inhibited bacterial growth of both MRSA and non-MR S. aureus in a bactericidal rather than a bacteriostatic manner (MBC/MIC ratio ≤ 4). Silver nanoparticle’s therapeutic index varied when nanoparticle’s size diminished. At the same dose range, 10 nm nanoparticles were the most effective since they did not affect HeLa’s cell viability while inhibiting a considerable percentage of MRSA growth. Silver nanoparticles are effective bactericidal agents that are not affected by drug-resistant mechanisms of MRSA. Nanosilver size mediates MRSA inhibition and the cytotoxicity to human cells, being smaller nanoparticles the ones with a better antibacterial activity and nontoxic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Velazquez-Meza ME. [Staphylococcus aureus methicillin-resistant: emergence and dissemination]. Salud Publica Mex. 2005;47:381–7.

    PubMed  Google Scholar 

  2. Bustos-Martinez JA, Hamdan-Partida A, Gutierrez-Cardenas M. Staphylococcus aureus: la reemergencia de un patógeno en la comunidad. Rev Biomed. 2006;17:287–305.

    Google Scholar 

  3. World Health Organization. Monitoring of Antimicrobial Resistance. Report of an Intercountry Workshop; 2003 Oct 14–17; Tamil Nadu, India. 2004.

  4. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA. 2007;298:1763–71.

    Article  CAS  PubMed  Google Scholar 

  5. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83.

    Article  CAS  PubMed  Google Scholar 

  6. Li Y, Leung P, Yao L, Song QW, Newton E. Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect. 2006;62:58–63.

    Article  CAS  PubMed  Google Scholar 

  7. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, et al. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology. 2005;3:6.

    Article  PubMed  Google Scholar 

  8. Yoon KY, Byeon JH, Park JH, Ji JH, Bae GN, Hwang J. Antimicrobial Characteristics of Silver Aerosol Nanoparticles against Bacillus subtilis Bioaerosols. Environ Eng Sci. 2008;25:289–93.

    Article  CAS  Google Scholar 

  9. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Tapia J, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–53.

    Article  CAS  ADS  Google Scholar 

  10. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18:1–9.

    Article  Google Scholar 

  11. Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006;110:16248–53.

    Article  CAS  PubMed  Google Scholar 

  12. Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol. 2009;48:173–9.

    Article  CAS  PubMed  Google Scholar 

  13. Inoue Y, Uota M, Torikai T, Watari T, Noda I, Hotokebuchi T, et al. Antibacterial properties of nanostructured silver titanate thin films formed on a titanium plate. J Biomed Mater Res A. 2009.

  14. Lut L, Sun RW, Chen R, Hui CK, Ho CM, Luk JM, et al. Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther. 2008;13:253–62.

    Google Scholar 

  15. Tredget EE, Shankowsky HA, Groeneveld A, Burrell R. A matched-pair, randomized study evaluating the efficacy and safety of Acticoat silver-coated dressing for the treatment of burn wounds. J Burn Care Rehabil. 1998;19:531–7.

    Article  CAS  PubMed  Google Scholar 

  16. Jain P, Pradeep T. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng. 2005;90:59–63.

    Article  CAS  PubMed  Google Scholar 

  17. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro. 2005;19:975–83.

    Article  CAS  PubMed  Google Scholar 

  18. Burd A, Kwok CH, Hung SC, Chan HS, Gu H, Lam WK, et al. A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair Regen. 2007;15:94–104.

    Article  PubMed  Google Scholar 

  19. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci. 2005;88:412–9.

    Article  CAS  PubMed  Google Scholar 

  20. Arora S, Jain J, Rajwade JM, Paknikar KM. Cellular responses induced by silver nanoparticles: In vitro studies. Toxicol Lett. 2008;179:93–100.

    Article  CAS  PubMed  Google Scholar 

  21. Tian J, Wong KK, Ho CM, Lok CN, Yu WY, Che CM, et al. Topical delivery of silver nanoparticles promotes wound healing. Chem Med Chem. 2007;2:129–36.

    CAS  PubMed  Google Scholar 

  22. Shin SH, Ye MK, Kim HS, Kang HS. The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol. 2007;7:1813–8.

    Article  CAS  PubMed  Google Scholar 

  23. Bhol KC, Schechter PJ. Topical nanocrystalline silver cream suppresses inflammatory cytokines and induces apoptosis of inflammatory cells in a murine model of allergic contact dermatitis. Br J Dermatol. 2005;152:1235–42.

    Article  CAS  PubMed  Google Scholar 

  24. Department of Health and Human Services, Centers for Disease Control. Detection of: Oxacillin/Methicillin-resistant Staphylococcus aureus. URL: http://www.cdc.gov/ncidod/dhqp/ar_lab_mrsa.html. Access date: Apr./14/2008.

  25. Cleusix V, Lacroix C, Vollenweider S, Duboux M, Le Blay G. Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria. BMC Microbiol. 2007;7:101.

    Article  PubMed  Google Scholar 

  26. Palavecino E. Clinical, Epidemiological, and Laboratory Aspects of Methicillin-Resistant Staphylococcus aureus (MRSA) Infections. In: Yinduo J, editor. Methicillin-Resistant Staphylococcus aureus (MRSA) Protocols. Humana Press; 2007. pp. 3–4.

  27. McDonnell GE. Chemical Disinfection. In: Antisepsis, disinfection, and sterilization. 2007;111–5.

  28. Starodub ME, Trevors JT. Silver resistance in Escherichia coli R1. J Med Microbiol. 1989;29:101–10.

    Article  CAS  PubMed  Google Scholar 

  29. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res. 2006;5:916–24.

    Article  CAS  PubMed  Google Scholar 

  30. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275:177–82.

    Article  CAS  PubMed  Google Scholar 

  31. Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73:1712–20.

    Article  CAS  PubMed  Google Scholar 

  32. Murray PR, Rosenthal KS, Kobayashi GS, Pfaller MA. Medical Microbiology. In: MMII Mosby, Inc.: Spain; 2005. pp. 12–3.

  33. Salton MRJ, Kim KS. Structure. In: Baron S, editor. Medical Microbiology. 2009.

Download references

Acknowledgments

This project was done with the economical support of the Programa de Apoyo a la Investigacion Cientifica y Tecnologica (PAICyT) of the Universidad Autonoma de Nuevo Leon, Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilda Vanesa Ayala-Núñez.

Additional information

NV Ayala and HH Lara made equal contributions to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayala-Núñez, N.V., Lara Villegas, H.H., del Carmen Ixtepan Turrent, L. et al. Silver Nanoparticles Toxicity and Bactericidal Effect Against Methicillin-Resistant Staphylococcus aureus: Nanoscale Does Matter. Nanobiotechnol 5, 2–9 (2009). https://doi.org/10.1007/s12030-009-9029-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12030-009-9029-1

Keywords

Navigation