Skip to main content
Log in

Evaluation of an oral carrier system in rats: bioavailability and gastrointestinal absorption properties of curcumin encapsulated PBCA nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A new oral delivery system, polybutylcyanoacrylate nanoparticles (PBCNs), was introduced to improve the oral bioavailability of curcumin (CUR), a poorly soluble drug. The formulation was optimized by orthogonal design and the optimal PBCNs loading CUR exhibited a spherical shape under transmission electron microscopy with a range of 40–400 nm. Physicochemical state of CUR in PBCN was investigated by X-ray diffraction and the possible structure changes occurring in CUR after conjugating with polybutylcyanoacrylate were studied with FTIR. The results indicated that CUR in PBCN was in a non-crystalline state and CUR was encapsulated in PBCN without chemical reaction. The oral pharmacokinetic study was conducted in rats and the relative bioavailability of CUR encapsulated PBCNs to the crude CUR was more than 800%. The in situ absorption experiment in rat intestine indicated the absorption was first order with passive diffusion mechanism. The absorption results in various segments of intestine showed that the main absorption sites were ileum and colon. It can be concluded that PBCNs as an oral carrier can significantly improve the oral absorption of a poorly soluble drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alyautdin RN, Petrov VE, Langer K, Berthold A, Kharkevich DA, Kreuter J (1997) Delivery of loperamide across the blood–brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res 14:325–328. doi:10.1023/A:1012098005098

    Article  CAS  Google Scholar 

  • Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818. doi:10.1021/mp700113r

    Article  CAS  Google Scholar 

  • Anand P, Nair HB, Sung B, Kunnumakkara AB, Yadav VR, Tekmal RR, Aggarwal BB (2010) Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol 79:330–338. doi:10.1016/j.bcp.2009.09.003

    Article  CAS  Google Scholar 

  • Behan N, Birkinshaw C (2000) Mechanism of polymerization of butylcyanoacrylate in aqueous dispersions. Macromol Rapid Commun 21:884–886. doi:10.1002/1521-3927(20000801

    Article  CAS  Google Scholar 

  • Behan N, Birkinshaw C, Clarke N (2001) Poly n-butyl cyanoacrylate nanoparticles: a mechanistic study of polymerisation and particle formation. Biomaterials 22:1335–1344. doi:10.1016/S0142-9612(00)00286-6

    Article  CAS  Google Scholar 

  • Chen RD, Ren F, Li GF, Liu SJ (2010) Preparation of paclitaxel-loaded polybutylanaocrylate nanoparticle. J South Med Univ 30:763–766

    Google Scholar 

  • Cirri M, Muraa P, Corvi MP (2007) Liquid spray formulations of xibornol by using self-microemulsifying drug delivery systems. Int J Pharm 340:84–91. doi:10.1016/j.ijpharm.2007.03.021

    Article  CAS  Google Scholar 

  • Cui J, Yu B, Zhao Y, Zhu WW, Li HL, Lou HX, Zhai GX (2009) Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems. Int J Pharm 371:148–155. doi:10.1016/j.ijpharm.2008.12.009

    Article  CAS  Google Scholar 

  • David W, Fryb J, White C, Goldman ID (1978) Rapid separation of low molecular weight solutes from liposomes without dilution. Anal Biochem 90:809–815. doi:10.1016/0003-2697(78)90172-0

    Article  Google Scholar 

  • Dembri A, Montisci MJ, Gantier JC, Chacun H, Ponchel G (2001) Targeting of 30-Azido 30-deoxythymidine (AZT)-loaded poly(isohexylcyanoacrylate) nanospheres to the gastrointestinal mucosa and associated lymphoid tissues. Pharm Res 18:467–474. doi:10.1023/A:1011050209986

    Article  CAS  Google Scholar 

  • Douglas SJ, Illum L, Davisand SS, Kreuter J (1984) Particle size and size distribution of poly(butyl-2-cyanoacrylate) nanoparticles. II. Influence of physicochemical factors. J Colloid Interface Sci 101:149–157. doi:10.1016/0021-9797(84)90015-8

    Article  CAS  Google Scholar 

  • Duchêne D, Ponchel G (1997) Bioadhesion of solid oral dosage forms, why and how? Eur J Pharm Biopharm 44:15–23. doi:10.1016/S0939-6411(97)00097-0

    Article  Google Scholar 

  • Duro R, Alvarez C, Martı′nez-Pacheco R, Go′mez-Amoza JL, Concheiro A, Souto C (1998) The adsorption of cellulose ethers in aqueous suspensions of pyrantel pamoate: effects on zeta potential and stability. Eur J Pharm Biopharm 45:181–188. doi:10.1016/S0939-6411(97)00103-3

    Article  CAS  Google Scholar 

  • Egan ME, Pearson M, Weiner SA, Rajendran V, Rubin D, Glockner-Pagel J, Canny S, Du K, Lukacs GL, Caplan MJ (2004) Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science 304:600–602. doi:10.1126/science.1093941

    Article  CAS  Google Scholar 

  • Eldridge JH (1990) Controlled release in the gut-associated lymphoid tissues. 1. Orally administered biodegradable microspheres target the Peyer’s patches. J Control Release 11:205–214. doi:10.1016/0168-3659(90)90133-E

    Article  CAS  Google Scholar 

  • Fawaz F, Guyot M, Lagueny AM, Devissaguet JP (1997) Ciprofloxacin-loaded poly (isobutylcyanoacrylate) nanoparticles: preparation and characterization. Int J Pharm 154:191–203

    Article  CAS  Google Scholar 

  • Gao XF, Deng YJ, Cao JN, Wang XM (2009a) Minicolumn centrifugation—HPLC determination of entrapment efficiency for liposomal formulation of altretamine. Chin J Pharm Anal 29:247–250

    CAS  Google Scholar 

  • Gao Y, Wang YQ, Ma YK, Yu AH, Cai FQ, Shao W, Zhai GX (2009b) Formulation optimization and in situ absorption in rat intestinal tract of quercetin-loaded microemulsion. Colloids Surf B 71:306–314. doi:10.1016/j.colsurfb.2009.03.005

    Article  CAS  Google Scholar 

  • Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J (1999) Significant transport of doxorubicin into the brain with polysorbate 80 coated nanoparticles. Pharm Res 16:1564–1570. doi:10.1023/A:1018983904537

    Article  CAS  Google Scholar 

  • He WL, Jiang XH, Zhang ZR (2008) Preparation and evaluation of poly-butylcyanoacrylate nanoparticles for oral delivery of thymopentin. J Pharm Sci 97:2250–2259. doi:10.1002/jps.21148

    Article  CAS  Google Scholar 

  • Hu YQ, Zheng LY, Qian CQ, Yu WH (1996) Absorption of phenol red from rat intestine. J Chin Pharm Univ 27:355–359

    CAS  Google Scholar 

  • Huang CY, Lee YD (2006) Core–shell type of nanoparticles composed of poly [(n-butyl cyanoacrylate)-co-(2-octylcyanoacrylate)] copolymers for drug delivery application: synthesis, characterization and in vitro degradation. Int J Pharm 325:132–139. doi:10.1016/j.ijpharm.2006.06.008

    Article  CAS  Google Scholar 

  • Huang CY, Chen CM, Lee YD (2007) Synthesis of high loading and encapsulation efficient paclitaxel-loaded poly (n-butyl cyanoacrylate) nanoparticles via miniemulsion. Int J Pharm 338:267–275. doi:10.1016/j.ijpharm.2007.01.052

    Article  CAS  Google Scholar 

  • Huo DJ, Deng SH, Li LB, Ji JB (2005) Studies on the poly (lactic-co-glycolic) acid microspheres of cisplatin for lung-targeting. Int J Pharm 289:63–67. doi:10.1016/j.ijpharm.2004.10.017

    Article  CAS  Google Scholar 

  • Hussain N, Jaitley V, Florence AT (2001) Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev 50:107–142. doi:10.1016/S0169-409X(01)00152-1

    Article  CAS  Google Scholar 

  • Johnson JJ, Mukhtar H (2007) Curcumin for chemoprevention of colon cancer. Cancer Lett 255:170–181. doi:10.1016/j.canlet.2007.03.005

    Article  CAS  Google Scholar 

  • Kakkar V, Singh S, Singla D, Kaur IP (2010) Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol Nutr Food Res 54:1–9. doi:10.1002/mnfr.201000310

    Google Scholar 

  • Lao C, Ruffin M, Normolle D, Heath D, Murray S, Bailey J (2006) Dose escalation of a curcuminoid formulation. BMC Complement Altern Med 6:10–15. doi:10.1186/1472-6882-6-10

    Article  Google Scholar 

  • Liu J, Zhu J, Du Z, Qin B (2005) Preparation and pharmacokinetic evaluation of Tashinone IIA solid lipid nanoparticles. Drug Dev Ind Pharm 31:551–556. doi:10.1080/03639040500214761

    Article  Google Scholar 

  • Lv QZ, Yu AH, Xi YW, Li HL, Song ZM, Cui J, Cao FL, Zhai GX (2009) Development and evaluation of penciclovir-loaded solid lipid nanoparticles for topical delivery. Int J Pharm 372:191–198. doi:10.1016/j.ijpharm.2009.01.014

    Article  CAS  Google Scholar 

  • Masaoka Y, Tanaka Y, Kataoka M, Sakuma S, Yamashita S (2006) Site of drug absorption after oral administration: assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract. Eur J Pharm Sci 29:240–250. doi:10.1016/j.ejps.2006.06.004

    Article  CAS  Google Scholar 

  • Mulik R, Mahadika K, Paradkarb A (2009) Development of curcuminoids loaded poly (butyl) cyanoacrylate nanoparticles: physicochemical characterization and stability study. Eur Pharm Sci 37:395–404. doi:10.1016/j.ejps.2009.03.009

    Article  CAS  Google Scholar 

  • Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery-are view of the state of the art. Eur J Pharm Biopharm 50:161–177. doi:10.1016/S0939-6411(00)00087-4

    Article  Google Scholar 

  • Murthy RSR, Reddy LH (2007) Poly (alkyl cyanocrylate) nanoparticles for delivery of anti-cancer drugs. Nanotechnology 251–288. doi:10.1201/9781420006636.ch15

  • Onoue S, Takahashi H, Kawabata Y, Seto Y, Hatanaka J, Timmermann B, Yamada S (2009) Formulation design and photochemical studies on nanocrystal solid dispersion of curcumin with improved oral bioavailability. J Pharm Sci 99:1871–1881. doi:10.1002/jps.21964

    Google Scholar 

  • Pan MH, Huang TM, Lin JK (1999) Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 27:486–494. doi:0090-9556/99/2701-0486-494

    CAS  Google Scholar 

  • Pappo J, Ermak TH (1989) Uptake and translocation of fluorescent latex particles by rabbit Peyer’s patch follicle epithelium: a quantitative model for Mcell uptake. Clin Exp Immunol 76:144–148

    CAS  Google Scholar 

  • Shaikha J, Ankolab DD, Beniwal V, Singha D, RaviKumar MNV (2009) Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci 37:223–230. doi:10.1016/j.ejps.2009.02.019

    Article  Google Scholar 

  • Shankar T, Shantha N, Ramesh H, Murthy I, Murthy V (1980) Toxicity studies on turmeric (Curcuma longa): acute toxicity studies in rats, guinea pigs and monkeys. Indian J Exp Biol 18:73–75

    CAS  Google Scholar 

  • Shantha KTR, Chawla S, Nachaegari SK, Singh SK, Srinivas NR (2005) Validated HPLC analytical method with programmed wavelength UV detection for simultaneous determination of DRF-4367 and Phenol red in rat in situ intestinal perfusion study. J Pharm Biomed Anal 38:173–179. doi:10.1016/j.jpba.2004.11.063

    Article  Google Scholar 

  • Sharma RA, Steward WP, Gescher AJ (2007) Pharmacokinetics and pharmacodynamics of curcumin. Adv Exp Med Biol 595:453–470. doi:10.1007/978-0-387-46401-5_20

    Article  Google Scholar 

  • Simeonova M, Ivanova G, Enchev V, Markova N, Kamburov M, Petkov C, Devery A, Connor R, Brougham D (2009) Physicochemical characterization and in vitro behavior of daunorubicin-loaded poly(butylcyanoacrylate) nanoparticles. Acta Biomater 5:2109–2121

    Article  CAS  Google Scholar 

  • Singh B, Mehta G, Kumar R, Bhatia A, Ahuja N, Katare OP (2005) Design, development and optimization of nimesulide-loaded liposomal systems for topical application. Curr Drug Deliv 2:143–153

    Article  CAS  Google Scholar 

  • Sun M, Gao Y, Guo CY, Cao FL, Song ZM, Xi YW, Yu AH, Li AG, Zhai GX (2010) Enhancement of transport of curcumin to brain in mice by poly(n-butylcyanoacrylate) nanoparticle. J Nanopart Res 12:3111–3122. doi:10.1007/s11051-010-9907-4

    Article  CAS  Google Scholar 

  • Takahashi M, Uechi S, Takara K, Asikin Y, Wada K (2009) Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin. J Agric Food Chem 57:9141–9146. doi:10.1021/jf9013923

    Article  CAS  Google Scholar 

  • Tonnesen HH, Masson M, Loftsson T (2002) Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm 244:127–135. doi:10.1016/S0378-5173(02)00323-X

    Article  CAS  Google Scholar 

  • Venkatesan N, Uchino K, Amagase K, Ito Y, Shibata N, Takada K (2006) Gastrointestinal patch system for the delivery of erythropoietin. J Control Release 111:19–26. doi:10.1016/j.jconrel.2005.11.009

    Article  CAS  Google Scholar 

  • Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, Lin JK (1997) Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed 15:1867–1876. doi:10.1016/S0731-7085(96)02024-9

    Article  CAS  Google Scholar 

  • Yang XX, Chen JH, Guo D (2005) Study of biocompatible of polybutylcyanoacrylate nanoparticles. J First Mil Med Univ 25:1261–1263. doi:http://www.j-smu.com/pdf2/200510/2005101261.pdf

    Google Scholar 

  • Yang KY, Lin LC, Tseng TY, Wang SC, Tsai TH (2007) Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. J Chromatogr B Anal Technol Biomed Life Sci 853:183–189. doi:10.1016/j.jchromb.2007.03.010

    Article  CAS  Google Scholar 

  • Ye JS, Wang Q, Zhou XF, Zhang Na (2008) Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. Int J Pharm 319:162–168. doi:10.1016/j.ijpharm.2007.10.014

    Google Scholar 

  • Yuan H, Chen J, Du YZ, Hu FQ, Zeng S, Zhao HL (2007) Studies on oral absorption of stearic acid SLN by a novel fluorometricmethod. Colloids Surf B Biointerfaces 58:157–164. doi:10.1016/j.colsurfb.2007.03.002

    Article  CAS  Google Scholar 

  • Zakeri-Milania P, Valizadeha H, Tajerzadehc H, Azarmia Y, Islambolchilara Z, Barzegara S, Barzegar-Jalalia M (2007) Predicting human intestinal permeability using single-pass intestinal perfusion in rat. J Pharm Pharm Sci 10:368–379

    Google Scholar 

  • Zhu WW, Yu AH, Wang WH, Dong RQ, Wu J, Zhai GX (2008) Formulation design of microemulsion for dermal delivery of penciclovir. Int J Pharm 360:184–190. doi:10.1016/j.ijpharm.2008.04.008

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is partly supported by the National Natural Science Foundation of China (No. 30973646).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangxi Zhai.

Additional information

Min Sun and Lixia Zhao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, M., Zhao, L., Guo, C. et al. Evaluation of an oral carrier system in rats: bioavailability and gastrointestinal absorption properties of curcumin encapsulated PBCA nanoparticles. J Nanopart Res 14, 705 (2012). https://doi.org/10.1007/s11051-011-0705-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0705-4

Keywords

Navigation