Skip to main content
Log in

Au–Sapphire (0001) solid–solid interfacial energy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work presents an experimental methodology for the measurement of interfacial energy (γSP) and work of adhesion (W ad) of a metal–ceramic interface. A thin Au film was dewetted on the basal surface of sapphire substrates to form submicron-sized particles, which were analyzed using the Winterbottom method to determine the equilibrated particle–substrate solid–solid interfacial energy. Electron microscopy showed that a large portion of the particles contained grain boundaries, while all of the single crystalline particles had three distinct morphologies and orientations with the substrate. Two orientation relationships were determined from transmission electron microscopy, for which the interfacial energy in air at 1000 °C was determined: Au (111)–sapphire (0001): γSP = 2.15 ± 0.04 J/m2, W ad = 0.49 ± 0.04 J/m2; Au (100)–sapphire (0001): 2.18 ± 0.06 J/m2, W ad = 0.55 ± 0.07 J/m2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Young T (1805) Philos Trans R Soc 65:95

    Google Scholar 

  2. Humenik M Jr., Kingery WD (1954) J Am Ceram Soc 37:18

    Article  CAS  Google Scholar 

  3. Wynblatt P (2000) Acta Materialia 48:4439

    Article  CAS  Google Scholar 

  4. Monchoux JP, Chatain D, Wynblatt P (2004) Appl Surf Sci 228:357

    Article  CAS  Google Scholar 

  5. Shim H, Wynblatt P, Chatain D (2000) Surf Sci 465:97

    Article  CAS  Google Scholar 

  6. Rao GZ, Wynblatt DBP (1993) Acta Metallurgica et Materialia 41:3331

    Article  CAS  Google Scholar 

  7. Murr LE (1973) Mater Sci Engineer 12:277

    Article  CAS  Google Scholar 

  8. Eustathopoulos N, Nicholas MG, Drevet B (1999) In: Wettability at high temperatures. Pergamon Materials Series v.3, Oxford, UK, p 43

  9. Lipkin DM, Israelachvili JN, Clarke DR (1997) Philos Mag A 76:715

    Article  CAS  Google Scholar 

  10. Dalgleish BJ, Saiz E, Tomsia AP, Cannon RM, Ritchie RO (1994) Scripta Metallurgica Et Materialia 31:1109

    Article  CAS  Google Scholar 

  11. Lipkin DM, Clarke DR, Evans AG (1998) Acta Materialia 46:4835

    Article  CAS  Google Scholar 

  12. Wulff G, Krystallogr Z (1901) Mineral 34:449

    CAS  Google Scholar 

  13. Herring C (1954) Phys Rev 82:87

    Article  Google Scholar 

  14. Blendell JE, Carter WC, Handwerker CA (1999) J Am Ceram Soc 82:1889

    Article  CAS  Google Scholar 

  15. Heyraud JC, Metois JJ (1980) J Crystal Growth 50:571

    Article  CAS  Google Scholar 

  16. Winterbottom WL (1967) Acta Metallurgica 15:303

    Article  CAS  Google Scholar 

  17. Pilliar RM, Nutting J (1967) Philos Mag 16:181

    Article  CAS  Google Scholar 

  18. Cahn JW, Hoffman DW (1974) Acta Metallurgica 22:1205

    Article  CAS  Google Scholar 

  19. Dingley D (2004) J Microsc 213:214

    Article  CAS  Google Scholar 

  20. Sivel VGM, Van Den Brand J, Wang WR, Mohdadi H, Tichelaar FD, Alkemade PFA, Zandbergen HW (2004) J Microsc 214:237

    Article  CAS  Google Scholar 

  21. Reyntjens S, Puers R (2001) J Micromech Microeng 11:287

    Article  CAS  Google Scholar 

  22. Holzer L, Indutnyi F, Gasser PH, Munch B, Wegmann M (2004) J Microsc 216:84

    Article  CAS  Google Scholar 

  23. Fiala JC (2004) J Microsc 218:52

    Article  Google Scholar 

  24. Heremann G, Gleiter H, Baro G (1975) Acta Metallurgica 24:353

    Article  Google Scholar 

  25. Saylor DM, Rohrer GS (1999) Proceedings of the international conference on textures of materials, 12th, Montreal QC, Canada, Aug. 9–13, 1999 2 (1999) 1690

  26. Chatain D, Ghetta V, Wynblatt P (2004) Interface Sci 12:7

    Article  CAS  Google Scholar 

  27. Wang Z, Wynblatt P (1998) Acta Materialia 46:4853

    Article  CAS  Google Scholar 

  28. Wang Z, Wynblatt P (1998) Surf Sci 398:259

    Article  CAS  Google Scholar 

  29. Cheng WC, Wynblatt P (1997) J Crystal Growth 173:513

    Article  CAS  Google Scholar 

  30. Chatain D, Wynblatt P, Rohrer GS (2005) Acta Materialia 53:4057

    Article  CAS  Google Scholar 

  31. Siem EJ, Carter WC, Chatain D (2004) Philos Mag 84:991

    Article  CAS  Google Scholar 

  32. Bonzel HP, Nowicki M (2004) Phys Rev B 70:245430

    Article  CAS  Google Scholar 

  33. Leadbeater CJ (1951) Powder Metall 9:1

    CAS  Google Scholar 

  34. Levi G, Kaplan WD (2003) Acta Materialia 51:2793

    CAS  Google Scholar 

  35. Fecht HJ, Gleiter H (1985) Acta Metallurgica 33:557

    Article  CAS  Google Scholar 

  36. Mullins WW, Rohrer GS (2000) J Am Ceram Soc 83:214

    Article  CAS  Google Scholar 

  37. Rohrer GS, Rohrer CL, Mullins WW (2001) J Am Ceram Soc 84:2099

    Article  CAS  Google Scholar 

  38. Herring C (1951) In: Kingston WE (ed) The physics of powder metallurgy, McGraw-Hill, New York, p 143

  39. Hodgson BK, Mykura H (1973) J Mater Sci 8:565

    Article  CAS  Google Scholar 

  40. Emundts A, Bonzel HP, Wynblatt P, Thurmer K, Reutt-Robey J, Williams ED (2001) Surf Sci 481:13

    Article  CAS  Google Scholar 

  41. Hansen KH, Worren T, Stempel S, Laegsgaard E, Baumer M, Freund HJ, Besenbacher F, Stensgaard I (1999) Phys Rev Lett 83:4120

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank D. Chatain, P. Wynblatt, and D. Brandon for enlightening discussions. The thought-provoking comments of the anonymous referee were very much appreciated. This research was partially supported by the Israel Science Foundation ((163/05) and the Russell Berrie Nanotechnology Institute at the Technion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne D. Kaplan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadan, H., Kaplan, W.D. Au–Sapphire (0001) solid–solid interfacial energy. J Mater Sci 41, 5099–5107 (2006). https://doi.org/10.1007/s10853-006-0437-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0437-5

Keywords

Navigation