Skip to main content
Log in

Stability of Zn–Ni–TiO2 and Zn–TiO2 nanocomposite coatings in near-neutral sulphate solutions

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Zn–Ni–TiO2 and Zn–TiO2 nanocomposites were prepared by galvanostatic cathodic square wave deposition. X-ray diffraction analysis and scanning electron microscopy revealed that the occlusion of TiO2 nanoparticles (spherical shaped with diameter between 19.5 and 24.2 nm) promotes the formation of the γ-Ni5Zn21 phase, changes the preferred crystallographic orientation of Zn from (101) and (102) planes to (002), and decreases the particle size of the metallic matrices. The stability of the nanocomposites immersed in near-neutral 0.05 mold m−3 Na2SO4 solution (pH 6.2) was investigated over 24 h. The initial open circuit potential for the Zn–Ni–TiO2 and Zn–TiO2 coatings were −1.32 and −1.51 V (vs. Hg/Hg2SO4), respectively, and changed to −1.10 and –1.49 V (vs. Hg/Hg2SO4) after 24 h of immersion. Data extracted from the steady state polarization curves demonstrated that the metal–TiO2 nanocomposites have, with respect to the metal coatings, a higher corrosion potential in the case of the Zn–Ni alloy composite; a lower corrosion potential in the case of Zn-based nanocomposite albeit the predominant (002) crystallographic orientation; and a lower initial corrosion resistance due to the smaller grain size and higher porosity in the Zn–Ni–TiO2 and Zn–TiO2 nanocomposites. Morphological and chemical analyses showed that a thicker passive layer is formed on the surface of the Zn–Ni–TiO2 and Zn–TiO2 deposits. After 24 h of immersion in the sulphate solution, the Zn–Ni–TiO2 coating has the highest corrosion stability due to the double-protective action created by the deposit’s surface enrichment in Ni plus the higher amount of corrosion products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alberts D, Fernández B, Frade T, Gomes A, da Silva Pereira MI, Pereiro R, Sanz-Medel A (2011) Depth profile characterization of Zn–TiO2 nanocomposite films by pulsed radiofrequency glow discharge-optical emission spectrometry. Talanta 84:572–578. doi:10.1016/j.talanta.2011.01.076

    Article  CAS  Google Scholar 

  • Asgari H, Toroghinejad MR, Golozar MA (2008) Relationship between (00.2) and (20.1) texture components and corrosion resistance of hot-dip galvanized zinc coatings. J Mater Process Technol 198:54–59. doi:10.1016/j.jmatprotec.2007.06.068

    Article  CAS  Google Scholar 

  • Ashton RF, Hepworth MP (1968) Effect of crystal orientation on anodic polarization and passivity of zinc. Corrosion 24:50–53

    Google Scholar 

  • Beltowska-Lehman E, Ozga P, Swiatek Z, Lupi C (2002a) Electrodeposition of Zn–Ni protective coatings from sulphatesulphate–acetate baths. Surf Coat Technol 151–152:444–448. doi:10.1016/S0257-8972(01)01614-0

    Article  Google Scholar 

  • Beltowska-Lehman E, Ozga P, Swiatek Z, Lupi C (2002b) Influence of structural factor on corrosion rate of functional Zn–Ni coatings. Cryst Eng 5:335–345. doi:10.1016/S1463-0184(02)00045-X

    Article  CAS  Google Scholar 

  • Benea L, Bonora PL, Borello A, Martelli S, Wenger F, Ponthiaux P, Galland J (2002) Preparation and investigation of nanostructured SiC–nickel layers by electrodeposition. Solid State Ion 151:89–95. doi:10.1016/S0167-2738(02)00586-6

    Article  CAS  Google Scholar 

  • Bérubé LPh, L’Espérance G (1989) A quantitative method of determining the degree of texture of zinc electrodeposits. J Electrochem Soc 136:2314–2315. doi:10.1149/1.2097318

    Article  Google Scholar 

  • Boshkov N, Tsvetkova N, Petrov P, Koleva D, Petrov K, Avdeev G, Tsvetanov Ch, Raichevsky G, Raicheff R (2008) Corrosion behavior and protective ability of Zn and Zn–Co electrodeposits with embedded polymeric nanoparticles. Appl Surf Sci 254:5618–5625. doi:10.1016/j.apsusc.2008.03.013

    Article  CAS  Google Scholar 

  • Bruet H, Bonino JP, Rousset A, Chauveau ME (1999) Structure of zinc–nickel alloyelectrodeposits. J Mater Sci 34:881–886. doi:10.1023/A:1004553803788

    Article  Google Scholar 

  • Byk TV, Gaevskaya TV, Tsybulskaya LS (2008) Effect of electrodeposition conditions on the composition, microstructure, and corrosion resistance of Zn–Ni alloy coatings. Surf Coat Technol 202:5817–5823. doi:10.1016/j.surfcoat.2008.05.058

    Article  CAS  Google Scholar 

  • Creus J, Mazille H, Idrissi H (2000) Porosity evaluation of protective coatings onto steel, through electrochemical techniques. Surf Coat Technol 130:224–232. doi:10.1016/S0257-8972(99)00659-3

    Article  CAS  Google Scholar 

  • Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, New York

    Google Scholar 

  • de Tacconi NR, Boyles CA, Rajeshwar K (2000) Surface morphology/composition and photoelectrochemical behavior of metal–semiconductor composite films. Langmuir 16:5665–5672. doi:10.1021/la000037x

    Article  Google Scholar 

  • Deguchi T, Imai K, Matsui H, Iwasaki M, Tada H, Ito S (2001) Rapid electroplating of photocatalytically highly active TiO2–Zn nanocomposite films on steel. J Mater Sci 36:4723–4729. doi:10.1023/A:1017927021397

    Article  CAS  Google Scholar 

  • Frade T, Bouzon V, Gomes A, da Silva Pereira MI (2010) Pulsed-reverse current electrodeposition of Zn and Zn–TiO2 nanocomposite films. Surf Coat Technol 204:3592–3598. doi:10.1016/j.surfcoat.2010.04.030

    Article  CAS  Google Scholar 

  • Frade T, Gomes A, da Silva Pereira MI, Alberts D, Pereiro R, Fernández B (2011) Studies on the stability of Zn and Zn–TiO2 nanocomposite coatings prepared by pulse reverse current. J Electrochem Soc 158:C63–C70. doi:10.1149/1.3531949

    Article  CAS  Google Scholar 

  • Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1:1–21. doi:10.1016/S1389-5567(00)00002-2

    Article  CAS  Google Scholar 

  • Fustes J, Gomes A, da Silva Pereira MI (2008) Electrodeposition of Zn–TiO2 nanocomposite films—effect of bath composition. J Solid State Electrochem 12:1435–1443. doi:10.1007/s10008-007-0485-z

    Article  CAS  Google Scholar 

  • Ganesan P, Kumaraguru SP, Popov BN (2007) Development of compositionally modulated multilayer Zn–Ni deposits as replacement for cadmium. Surf Coat Technol 201:7896–7904. doi:10.1016/j.surfcoat.2007.03.033

    Article  CAS  Google Scholar 

  • Garcia E, Sarret M, Muller C, Ortega JA (2002) Residual stress and other structural characteristics of electroplated ZnNi alloys. J Electrochem Soc 149:C284–C288. doi:10.1149/1.1469033

    Article  CAS  Google Scholar 

  • Gavrila M, Millet JP, Mazille H, Marchandise D, Cuntz JM (2000) Corrosion behaviour of zinc–nickel coatings, electrodeposited on steel. Surf Coat Technol 123:164–172. doi:10.1016/S0257-8972(99)00455-7

    Article  CAS  Google Scholar 

  • Gomes A, da Silva Pereira MI, Mendonça MH, Costa FM (2005) Zn–TiO2 composite films prepared by pulsed electrodeposition. J Solid State Electrochem 9:190–196. doi:10.1007/s10008-004-0573-2

    Article  CAS  Google Scholar 

  • Gomes A, Almeida I, Frade T, Tavares AC (2010a) Zn–TiO2 and ZnNi–TiO2 nanocomposite coatings: corrosion behaviour. Mater Sci Forum 636–637:1079–1083. doi: 10.4028/www.scientific.net/MSF.636-637.1079

  • Gomes A, Frade T, da Silva Pereira MI (2010b) Studies on the stability of Zn and Zn–TiO2 nanocomposite coatings prepared by pulse reverse current. ECS Trans 28:13–23. doi:10.1149/1.3496419

    Article  CAS  Google Scholar 

  • ICDD File 4-0831 Power Diffraction File Alphabetical Index (1988) International Center for Diffraction Data (ed). Swarthmore, USA

  • ICDD File 6-653 Power Diffraction File Alphabetical Index (1988) International Center for Diffraction Data (ed). Swarthmore, USA

  • ICDD Files 32-1477 and 35-910 Power Diffraction File Alphabetical Index (1988) For ZnSO4 and Zn4SO4(OH)6, respectively, International Center for Diffraction Data (ed). Swarthmore, USA

  • Ismal KM, Elsherif RM, Badawy WA (2004) Effect of Zn and Pb contents on the electrochemical behavior of brass alloys in chloride-free neutral sulphate solutions. Electrochim Acta 49:5151–5160. doi:10.1016/j.electacta.2004.06.028

    Article  Google Scholar 

  • Lekka M, Zendron G, Zanella C, Lanzutti A, Fedrizzi L, Bonora PL (2011) Corrosion properties of micro- and nanocomposite copper matrix coatings produced from a copper pyrophosphate bath under pulse current. Surf Coat Technol 205:3438–3447. doi:10.1016/j.surfcoat.2010.12.003

    Article  CAS  Google Scholar 

  • Lempka Th, Leopold A, Dietrich D, Alisch G, Wielage B (2006) Correlation between structure and corrosion behaviour of nickel dispersion coatings containing ceramic particles of different sizes. Surf Coat Technol 201:3510–3517. doi:10.1016/j.surfcoat.2006.08.073

    Article  Google Scholar 

  • Lin CS, Lee HB, Hsieh SH (2000) Microstructure and formability of ZnNi alloy electrodeposited sheet steel. Met Mater Trans A 31A:475–485. doi:10.1007/s11661-000-0283-z

    Article  CAS  Google Scholar 

  • Ling CC, Huang CM (2006) Zinc–nickel alloy coatings electrodeposited by pulse current and their corrosion behaviour. JCT Res 3:99–104. doi:10.1007/s11998-006-0011-8

    Article  Google Scholar 

  • Müller C, Sarret M, Benballa M (2002) ZnNi/SiC composites obtained from an alkaline bath. Surf Coat Technol 162:49–53. doi:10.1016/S0257-8972(02)00360-2

    Article  Google Scholar 

  • Porter FR (1994) Corrosion resistance of zinc and zinc alloys. Mercel and Dekker Inc., New York

    Google Scholar 

  • Praveen BM, Venkatesha TV (2008) Electrodeposition and properties of Zn-nanosized TiO2 composite coatings. Appl Surf Sci 254:2418–2424. doi:10.1016/j.apsusc.2007.09.047

    Article  CAS  Google Scholar 

  • Praveen BM, Venkatesha TV (2009) Electrodeposition and properties of Zn–Ni–CNT composite coatings. J Alloys Compd 482:53–57. doi:10.1016/j.jallcom.2009.04.056

    Article  CAS  Google Scholar 

  • Short NR, Zhou S, Dennis JK (1996) Electrochemical studies on the corrosion of a range of zinc alloy coated steel in alkaline solutions. Surf Coat Technol 79:218–224. doi:10.1016/0257-8972(95)02428-X

    Article  CAS  Google Scholar 

  • Takahashi A, Miyoshi Y, Hada T (1994) Effect of SiO2 colloid on the electrodeposition of zinc–iron group metal alloy composites. J Electrochem Soc 141:954–957. doi:10.1149/1.2054864

    Article  CAS  Google Scholar 

  • Thiemig D, Bund A (2008) Characterization of electrodeposited Ni–TiO2 nanocomposite coatings. Surf Coat Technol 202:2976–2984. doi:10.1016/j.surfcoat.2007.10.035

    Article  CAS  Google Scholar 

  • Tulio PC, Rodrigues SEB, Carlos IA (2007) The influence of SiC and Al2O3 micrometric particles on the electrodeposition of ZnNi films and the obtainment of ZnNi–SiC and ZnNi–Al2O3 electrocomposite coatings from slightly acidic solutions. Surf Coat Technol 202:91–99. doi:10.1016/j.surfcoat.2007.04.084

    Article  CAS  Google Scholar 

  • Vasilakopoulos D, Bouroushian M, Spyrellis N (2006) Texture and morphology of pulse plated zinc electrodeposits. J Mater Sci 41:2869–2875. doi:10.1007/s10853-005-5161-z

    Article  CAS  Google Scholar 

  • Vlasa A, Varsara S, Pop A, Bulea C, Muresan LM (2010) Electrodeposited Zn–TiO2 nanocomposite coatings and their corrosion behavior. J Appl Electrochem 40:1519–1527. doi:10.1007/s10800-010-0130-x

    Article  CAS  Google Scholar 

  • Zhang XG (1996) Corrosion and electrochemistry of zinc. Plenum Press, New York

    Google Scholar 

  • Zhang B, Zhou H-B, Han E-H, Ke W (2009) Effects of a small addition of Mn on the corrosion behaviour of Zn in a mixed solution. Electrochim Acta 54:6598–6608. doi:10.1016/j.electacta.2009.06.061

    Article  CAS  Google Scholar 

  • Zheng HY, An MZ (2008) Electrodeposition of Zn–Ni–Al2O3 nanocomposite coatings under ultrasound conditions. J Alloys Compd 459:548–552. doi:10.1016/j.jallcom.2007.05.043

    Article  CAS  Google Scholar 

  • Zhou M, de Tacconi NR, Rajeshwar KJ (1997) Preparation and characterization of nanocrystalline composite (nanocomposite) films of titanium dioxide and nickel by occlusion electrodeposition. J Electroanal Chem 421:111–120. doi:10.1016/S0022-0728(96)04825-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from Fundação para a Ciência e Tecnologia (Portugal), under research project PTDC/CTM/64856/2006, and A. C. Tavares acknowledges support from NSERC (Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gomes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomes, A., Almeida, I., Frade, T. et al. Stability of Zn–Ni–TiO2 and Zn–TiO2 nanocomposite coatings in near-neutral sulphate solutions. J Nanopart Res 14, 692 (2012). https://doi.org/10.1007/s11051-011-0692-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0692-5

Keywords

Navigation