Skip to main content
Log in

Protein-assisted synthesis route of metal nanoparticles: exploration of key chemistry of the biomolecule

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Essentially, biomolecule assisted synthesis of inorganic nanoparticles can be divided into two categories. One uses multi-domain protein cages (template) and other relies on the self-assembly of the biomolecules including small peptides, DNA, and denatured protein. Protein templated synthesis of various nanomaterials is relatively well understood as the cages of the biological macromolecules and their specific interaction with inorganic ions ultimately dictate the size and crystallinity of the nanomaterials. On the other hand formation of nanoparticles using protein in the cost of the native structural integrity for the self-assembly is not well understood till date. In the present work we report a protein-assisted synthesis route to prepare highly crystalline 3–5 nm gold nanoparticles, which relies systematic thermal denaturation of a number of proteins and protein mixture from Escherichia coli in absence of any reducing agent. By using UV–vis, circular dichroism spectroscopy, and high-resolution transmission electron microscopy we have explored details of the associated biochemistry of the proteins dictating kinetics, size, and crystallinity of the nanoparticles. The kinetics of nanoparticles formation in this route, which is sigmoidal in nature, has been modelled in a simple scheme of autocatalytic process. Interestingly, the protein-capped as prepared Au nanoparticles are found to serve as effective catalyst to activate the reduction of 4-nitrophenol in the presence of NaBH4. The kinetic data obtained by monitoring the reduction of 4-nitrophenol by UV/vis-spectroscopy revealing the efficient catalytic activity of the nanoparticles have been explained in terms of the Langmuir–Hinshelwood model. The methodology and the details of the protein chemistry presented here may find relevance in the protein-assisted synthesis of inorganic nanostructures in general.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

Similar content being viewed by others

References

  • Belohlav Z, Zamostny P (2000) A rate-controlling step in Langmuir–Hinshelwood kinetic models. Can J Chem Eng 78:513–521

    Article  CAS  Google Scholar 

  • Bohren CF, Huffman DR (1983) Absoption and scattering of light by small particles. Wiley, NewYork

    Google Scholar 

  • Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  • Dhawan A, Muth JF (2006) Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix. Nanotechnology 17:2504–2511

    Article  CAS  Google Scholar 

  • Dinda E, Rashid MH, Mandal TK (2010) Amino acid-based redox active amphiphiles to in situ synthesize gold nanostructures: from sphere to multipod. Cryst Growth Des 10:2421–2433

    Article  CAS  Google Scholar 

  • Doyle WT (1958) Absorption of light by colloids in alkali halide crystals. Phys Rev 111:1067–1072

    Article  CAS  Google Scholar 

  • Drummond PD, Vaughan TG, Drummond AJ (2010) Extinction times in autocatalytic systems. J Phys Chem A 114:10481–10491

    Article  CAS  Google Scholar 

  • El-Brolossy TA, Abdallah T, Mohamed MB, Abdallah S, Easawi K, Negm S, Talaat H (2008) Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by photoacoustic technique. Eur Phys J 153:361–364

    Google Scholar 

  • Esumi K, Isono R, Yoshimura T (2004) Preparation of PAMAM- and PPI-metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol. Langmuir 20:237–243

    Article  CAS  Google Scholar 

  • Fei L, Perrett S (2009) Effect of nanoparticles on protein folding and fibrillogenesis. Int J Mol Sci 10:646–655

    Article  CAS  Google Scholar 

  • Flenniken ML, Uchida M, Liepold LO, Kang S, Young MJ, Douglas T (2009) A library of protein cage architectures as nanomaterials viruses and nanotechnology. Curr Top Microbio Imunnol 327:71–93

    Article  CAS  Google Scholar 

  • Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862

    Article  CAS  Google Scholar 

  • Huang ZY, Mills G, Hajek B (1993) Spontaneous formation of silver particles in basic 2-propanol. J Phys Chem 97:11542–11550

    Article  CAS  Google Scholar 

  • Jin RC (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903

    Article  CAS  Google Scholar 

  • Kamal JKA, Behere DV (2002) Thermal unfolding of soybean peroxidase: appropriate high denaturant concentrations induce cooperativity allowing the correct measurement of thermodynamic parameters. J Biol Chem 277:40717–40721

    Article  CAS  Google Scholar 

  • Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Agnew Chem Int Ed 43:6042–6108

    Article  CAS  Google Scholar 

  • Kim H, Pippel E, Gosele U, Knez M (2009) Titania nanostructures fabricated by atomic layer deposition using spherical protein cages. Langmuir 25:13284–13289

    Article  CAS  Google Scholar 

  • Klem MT, Willits D, Solis DJ, Belcher AM, Young M, Douglas T (2005) Bio-inspired synthesis of protein-encapsulated CoPt nanoparticles. Adv Funct Mater 15:1489–1494

    Google Scholar 

  • Kramer RM, Li C, Carter DC, Stone MO, Naik RR (2004) Engineered protein cages for nanomaterial synthesis. J Am Chem Soc 126:13282–13286

    Article  CAS  Google Scholar 

  • Link S, El-Sayed MA (2000) Shape and size dependence of radiative, properties of gold nanocrystals. Int Rev Phys Chem 19:409–453

    Article  CAS  Google Scholar 

  • Loweth CJ, Caldwell WB, Peng XG, Alivisatos AP, Schultz PG (1999) DNA-based assembly of gold nanocrystals. Agnew Chem Int Ed 38:1808–1812

    Article  CAS  Google Scholar 

  • Luo J, Maye MM, Han L, Kariuki NN, Jones VW, Lin Y, Engelhard MH, Zhong CJ (2004) Spectroscopic characterizations of molecularly linked gold nanoparticle assemblies upon thermal treatment. Langmuir 20:4254–4260

    Article  CAS  Google Scholar 

  • Malikova N, Pastoriza-Santos I, Schierhorn M, Kotov NA, Liz-Marzan LM (2002) Layer-by-layer assembled mixed spherical and planar gold nanoparticles: control of interparticle interactions. Langmuir 18:3694–3697

    Article  CAS  Google Scholar 

  • Mie G (1908) Contributions to the optics of turbid media, particularly of colloidal metal solutions. Ann Phys 25:377–445

    Article  CAS  Google Scholar 

  • Mei Y, Sharma G, Lu Y, Ballauff M (2005) High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes. Langmuir 21:12229–12234

    Article  CAS  Google Scholar 

  • Mei Y, Lu Y, Polzer F, Ballauff M (2007) Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels. Chem Mater 19:1062–1069

    Article  CAS  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  Google Scholar 

  • Murugadoss A, Chattopadhyay A (2008) Surface area controlled differential catalytic activities of one-dimensional chain-like arrays of gold nanoparticles. J Phys Chem C 112:11265–11271

    Article  CAS  Google Scholar 

  • Narayanan R, El-Sayed MA (2004) Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes: electron-transfer reaction. J Am Chem Soc 126:7194–7195

    Article  CAS  Google Scholar 

  • Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Gosh SK, Pal T (2007) Synthesis and size-selective catalysis by supported gold nanoparticles: study on heterogeneous and homogeneous catalytic process. J Phys Chem C 111:4596–4605

    Article  CAS  Google Scholar 

  • Praharaj S, Nath S, Ghosh SK, Kundu S, Pal T (2004) Immobilization and recovery of Au nanoparticles from anion exchange resin: resin-bound nanoparticle matrix as a catalyst for the reduction of 4-nitrophenol. Langmuir 20:9889–9892

    Google Scholar 

  • Riboh JC, Haes AJ, McFarland AD, Ranjit C, Van Duyne RP (2003) A nanoscale optical biosensor: real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion. J Phys Chem B 107:1772–1780

    Article  CAS  Google Scholar 

  • Saha S, Pal A, Kundu S, Basu S, Pal T (2010) Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26:2885–2893

    Article  CAS  Google Scholar 

  • Shafer-Peltier KE, Haynes CL, Glucksberg MR, Van Duyne RP (2003) Toward a glucose biosensor based on surface-enhanced raman scattering. J Am Chem Soc 125:588–593

    Article  CAS  Google Scholar 

  • Shang L, Wang Y, Jiang J, Dong S (2007) pH-Dependent protein conformational changes in albumin: gold nanoparticle bioconjugates: a spectroscopic study. Langmuir 23:2714–2721

    Article  CAS  Google Scholar 

  • Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120:1959–1964

    Article  CAS  Google Scholar 

  • Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  • Tan YN, Lee JY, Wang DIC (2010) Uncovering the design rules for peptide synthesis of metal nanoparticles. J Am Chem Soc 132:5677–5686

    Article  CAS  Google Scholar 

  • Tian N, Zhou ZY, Sun S-G, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735

    Article  CAS  Google Scholar 

  • Umpleby RJ, Baxter SC, Chen Y, Shah RN, Shimizu KD (2001) Characterization of molecularly imprinted polymers with the langmuir freundlich isotherm. Anal Chem 73:4584–4591

    Article  CAS  Google Scholar 

  • Ung T, Liz-Marzan L, Mulvaney P (2001) Optical properties of thin films of Au@SiO2 particles. J Phys Chem B 105:3441–3452

    Google Scholar 

  • Vajda S, Pellin JM, Greeley PJ, Marshall LC, Curtiss AL, Ballentine AG, Elam WJ, Catillon-Mucherie S, Redfern CP, Mehmood F, Zapol P (2009) Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat Mater 8:213–216

    Article  CAS  Google Scholar 

  • Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M (2010) Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J Phys Chem C 114:8814–8820

    Article  CAS  Google Scholar 

  • Xie JP, Zheng YG, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131:888–889

    Article  CAS  Google Scholar 

  • Xu W, Kong JS, Yeh Y-TE, Chen P (2008) Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nat Mater 7:992–996

    Article  CAS  Google Scholar 

  • Xu W, Kong JS, Chen P (2009) Single-molecule kinetic theory of heterogeneous and enzyme catalysis. J Phys Chem C 113:2393–2404

    Article  CAS  Google Scholar 

  • Zeman EJ, Schatz GC (1987) An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium. J Phys Chem 91:634–643

    Article  CAS  Google Scholar 

  • Zhang H, Li X, Chen G (2009) Ionic liquid-facilitated synthesis and catalytic activity of highly dispersed Ag nanoclusters supported on TiO2. J Mater Chem 19:8223–8231

    Google Scholar 

Download references

Acknowledgment

Nirmal Goswami thanks CSIR, India for fellowship. We thank DST for a financial grant (SR/SO/BB-15/2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Kumar Pal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goswami, N., Saha, R. & Pal, S.K. Protein-assisted synthesis route of metal nanoparticles: exploration of key chemistry of the biomolecule. J Nanopart Res 13, 5485 (2011). https://doi.org/10.1007/s11051-011-0536-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0536-3

Keywords

Navigation