Skip to main content
Log in

Plasma kinetics and biodistribution of water-soluble CdTe quantum dots in mice: a comparison between Cd and Te

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Water-soluble quantum dots (QDs) have shown potential as tumor diagnostic agents. However, little is known about their biological behaviors in vivo. Male ICR mice were intravenously given a single dose (2.5 μmol kg−1 body weight) of water-soluble cadmium–telluride (CdTe) QDs (the QDs are approximately 4 nm in diameter and have maximal emission at 630 nm). Inductively coupled plasma mass spectrometry (ICP-MS) was used for measuring the kinetic action of 111Cd and 125Te for 7 days. The plasma kinetics of Cd and Te followed a two-compartment model, in which Cd exhibited greater apparent volume of distribution, greater clearance, faster distribution half-life, and significantly slower elimination half-life compared to Te. Contrary to its relatively transient fate in the plasma, high levels of Cd persisted in the liver and kidneys. Te accumulated primarily in the spleen. The different plasma kinetics and distribution patterns of Cd and Te imply that CdTe QDs have been part of the degradation or aggregation in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 99:12617–12621

    Article  CAS  Google Scholar 

  • Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15:79–86

    Article  CAS  Google Scholar 

  • Ballou B, Ernst LA, Andreko S, Harper T, Fitzpatrick JAJ, Waggoner AS, Bruchez MP (2007) Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug Chem 18:389–396

    Article  CAS  Google Scholar 

  • Bertin G, Averbeck D (2006) Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 88:1549–1559

    Article  CAS  Google Scholar 

  • Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  Google Scholar 

  • Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6:669–676

    Article  CAS  Google Scholar 

  • Chen Z, Chen H, Meng H, Xing G, Gao X, Sun B, Shi X, Yuan H, Zhang C, Liu R, Zhao F, Zhao Y, Fang X (2008) Bio-distribution and metabolic paths of silica coated CdSeS quantum dots. Toxicol Appl Pharm 230:364–371

    Article  CAS  Google Scholar 

  • Colvin V (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    Article  CAS  Google Scholar 

  • Dabbousi BO, Rodriguez Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core–shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475

    Article  CAS  Google Scholar 

  • Delehanty JB, Mattoussi H, Medintz IL (2009) Delivering quantum dots into cells: strategies, progress and remaining issues. Anal Bioanal Chem 39:1091–1105

    Article  Google Scholar 

  • Derfus AM, Chan WC, Bhatia S (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Article  CAS  Google Scholar 

  • Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  CAS  Google Scholar 

  • Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  Google Scholar 

  • Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169

    Article  CAS  Google Scholar 

  • Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732

    Article  CAS  Google Scholar 

  • Jennifer LP, Abdallah SD, Marc AS (2009) State of academic knowledge on toxicity and biological fate of quantum dots. Toxicol Sci 112:276–296

    Article  Google Scholar 

  • Juzenas P, Chen W, Sun Y, Neto Coelho MA, Generalov R, Generalova N, Christensen IL (2008) Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Delivery Rev 60:1600–1614

    Article  CAS  Google Scholar 

  • Kennel SJ, Woodward JD, Rondinone AJ, Wall J, Huang Y, Mirzadeh S (2008) The fate of MAb-targeted Cd(125 m)Te/ZnS nanoparticles in vivo. Nucl Med Biol 35:501–514

    Article  CAS  Google Scholar 

  • Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier AM, Gaub AHE, Stizle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338

    Article  CAS  Google Scholar 

  • Kuno M, Lee JK, Dabbousi BO, Mikulec FV, Bawendi MG (1997) The band edge luminescence of surface modified CdSe nanocrystallites: probing the luminescing state. J Chem Phys 106:9869–9882

    Article  CAS  Google Scholar 

  • Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW et al (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436

    Article  CAS  Google Scholar 

  • Li CL, Murase N (2005) Surfactant-dependent photoluminescence of CdTe nanocrystals in aqueous solution. Chem Lett 34:92–93

    Article  CAS  Google Scholar 

  • Li HC, Luo WR, Tao Y, Wu Y, Lv XF, Zhou QF, Jiang GB (2009) Effects of nanoscale quantum dots in male Chinese loaches (Misgurnus anguillicaudatus): estrogenic interference action, toxicokinetics and oxidative stress. Sci China Ser B 52:1683–1690

    Article  CAS  Google Scholar 

  • Lin P, Chen J, Chang LW, Wu J, Redding L, Chang H, Yeh T, Yang CS, Tsai M, Wang H, Kuo Y, Yang RS (2008) Computational and ultrastructural toxicology of a nanoparticle, quantum dot 705, in mice. Environ Sci Technol 42:6264–6270

    Article  CAS  Google Scholar 

  • Liu R, Sun F, Zhang L, Zong W, Zhao X, Wang L, Wu R, Hao X (2009) Evaluation on the toxicity of nanoAg to bovine serum albumin. Sci Total Environ 407:4184–4188

    Article  CAS  Google Scholar 

  • Lovric J, Bazzi HS, Cuie Y, Fortin GRA, Winnik FM, Maysinger D (2005a) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83:377–385

    Article  Google Scholar 

  • Lovric J, Cho SJ, Winnik FM, Maysinger D (2005b) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12:1227–1234

    Article  CAS  Google Scholar 

  • Morgan DL, Shines CJ, Jeter SP, Blazka ME, Elwell MR, Wilson RE, Ward SM, Price HC, Moskowitz PD (1997) Comparative pulmonary absorption, distribution, and toxicity of copper gallium diselenide, copper indium diselenide, and cadmium telluride in Sprague–Dawley rats. Toxicol Appl Pharmacol 147:399–410

    Article  CAS  Google Scholar 

  • Myung N, Bae Y, Bard AJ (2003) Enhancement of the photoluminescence of CdSe nanocrystals dispersed in CHCl3 by oxygen passivation of surface states. Nano Lett 3:747–749

    Article  CAS  Google Scholar 

  • Samia ACS, Chen X, Burda C (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125:15736–15737

    Article  CAS  Google Scholar 

  • Satarug S, Baker JR, Reilly PEB, Moore MR, Williams DJ (2002) Cadmium levels in the lung, liver, kidney cortex and urine samples from Australians without occupational exposure to metals. Arch Environ Health 57:69–77

    Article  CAS  Google Scholar 

  • Sayes CM, Marchione AA, Reed KL, Warheit DB (2007) Comparative pulmonary toxicity assessments of C-60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett 7:2399–2406

    Article  CAS  Google Scholar 

  • Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliver Rev 60:1226–1240

    Article  CAS  Google Scholar 

  • So MK, Xu CJ, Loening AM, Gambhir SS, Rao JH (2006) Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 24:339–343

    Article  CAS  Google Scholar 

  • Su Y, He Y, Lu H, Sai L, Li Q, Li W, Wang L, Shen P, Huang Q, Fan C (2009) The cytotoxicity of cadmium based, aqueous phase-synthesized, quantum dots and its modulation by surface coating. Biomaterials 30:19–25

    Article  CAS  Google Scholar 

  • Taylor A (1996) Biochemistry of tellurium. Biol Trace Elem Res 55:231–239

    Article  CAS  Google Scholar 

  • Thomas GC, Derie EF, Juan CT, Claudio CV (2009) Tellurite: history, oxidative stress, and molecular mechanisms of resistance. FEMS Microbiol Rev 33:820–832

    Article  Google Scholar 

  • Vinceti M, Wei ET, Malagoli C, Bergomi M, Vivoli G (2001) Adverse health effects of selenium in humans. Rev Environ Health 16:233–251

    Article  CAS  Google Scholar 

  • Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10:993–998

    Article  CAS  Google Scholar 

  • Woodward JD, Kennel SJ, Mirzadeh S, Dai S, Wall JS, Richey T, Avenell J, Rondinone AJ (2007) In vivo SPECT/CT imaging and biodistribution using radioactive Cd125mTe/ZnS nanoparticles. Nanotechnology 18:175103–175108

    Article  Google Scholar 

  • Xu L, Chen KJ, El-Khair HM, Li MH, Huang XF (2001) Enhancement of band-edge luminescence and photo-stability in colloidal CdSe quantum dots by various surface passivation technologies. Appl Surf Sci 172:84–88

    Article  CAS  Google Scholar 

  • Yan YX, Mu Y, Feng GD, Zhang L, Zhu LL, Xu L, Yang R, Jin QH (2008) Novel strategy for synthesis of high quality CdTe nanocrystals in aqueous solution. Chem Res Chin Univ 24:24–28

    Article  Google Scholar 

  • Yang RS, Chang LW, Wu JP, Tsai MH, Wang HJ, Kuo YC, Yeh TK, Yang CS, Lin P (2007) Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ Health Perspect 115:1339–1343

    Article  CAS  Google Scholar 

  • Yu K, Zaman B, Singh S, Wang DS, Ripmeester JA (2005) The effect of dispersion media on photoluminescence of colloidal CdSe nanocrystals synthesized from TOP. Chem Mater 17:2552–2561

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Key Technologies Research & Development Program of China (No.2006BAK03A09), National Basic Research Program of China (No.2007CB714503), and the Science and Technology Development Program of Jilin Province (No.20060706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peili Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Xie, G., Sun, Z. et al. Plasma kinetics and biodistribution of water-soluble CdTe quantum dots in mice: a comparison between Cd and Te. J Nanopart Res 13, 5373–5380 (2011). https://doi.org/10.1007/s11051-011-0523-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0523-8

Keywords

Navigation